Почему срабатывает тепловое реле электродвигателя. Тепловое реле — как его подобрать для защиты электродвигателя

Токозависимые защитные устройства имеют разный принцип действия и несут в себе различные функции, направленные на защиту .

Предохранители
Предохранители предназначены для защиты электрических сетей от перегрузок и коротких замыканий. Конструктивно они состоят из корпуса из электроизоляционного материала и плавкой вставки, выбираемой из такого расчета, чтобы она плавилась прежде, чем температура двигателя достигнет опасных пределов в результате протекания токов перегруза или короткого замыкания. Включаются предохранители последовательно защищаемой сети. Предохранители способны защитить асинхронные электродвигатели, (далее по тексту АД), только от токов короткого замыкания в 10-100 раз превышающие номинальные токи. Токи же перегруза или другие токовые аварии, они будут воспринимать как пусковые токи, не реагируя на них. В лучшем случае, они способны отключить электродвигатель только через несколько минут, что может привести к перегреву обмоток и к аварии АД. Поэтому, для защиты электродвигателей от короткого замыкания в нем самом или в подводящем кабеле, используют предохранители с плавкой вставкой типа аМ с более пологой токо-временной характеристикой. Они способны выдерживать, не расплавляясь, токи в 5-10 раз превышающие номинальные в течение 10 с, что вполне достаточно для запуска двигателя. Для защиты от перегрузки необходимо использовать другие устройства. Предохранители абсолютно не способны защищать от аварий, связанных с авариями сетевого напряжения, от аварий, связанных с нарушением режимов работы АД или тепловым перегрузом, а также от режима холостого хода двигателя. В то же время, при однофазном коротком замыкании, а иногда при сильном перекосе фаз они, как правило, отключают только одну фазу, что приводит к аварийному режиму работы на двух фазах.

Автоматические выключатели (автоматы)
Автоматические выключатели (автоматы) предназначены для включения и отключения асинхронных электродвигателей и других приемников электроэнергии, а также для защиты их от токов перегрузки и короткого замыкания. Автоматы совмещают в себе функцию рубильника, предохранителя и теплового реле. Обеспечивают одновременное отключение всех трех фаз в случае возникновения аварийных ситуаций. В рабочем режиме включение и отключение производится вручную; в аварийном режиме он отключается автоматически электромагнитным или тепловым расцепителем. Важной составной частью автомата является расцепитель, который контролирует заданный параметр защищаемой сети и воздействует на расцепляющее устройство, отключающее автомат. Наибольшее распространение получили расцепители следующих типов:

  1. электромагнитные, для защиты от токов короткого замыкания;
  2. тепловые для защиты от перегрузок;
  3. комбинированные.

Электромагнитный расцепитель состоит из катушки с подвижным сердечником и возвратной пружины. При протекании по катушке тока короткого замыкания сердечник мгновенно втягивается и воздействует на отключающую рейку механизма свободного расцепления.

Тепловой расцепитель представляет собой биметаллическую пластину, соединенную последовательно с контактом. При нагревании ее током перегрузки она изгибается и воздействует на отключающую рейку механизма свободного расцепления с обратно-зависимой выдержкой времени.

Выбор автоматических выключателей производится по номинальному току, характеристике срабатывания, отключающей способности, условиям монтажа и эксплуатации. Правильный выбор характеристики автоматического выключателя является залогом его своевременного срабатывания.

В соответствии со стандартами IEC 898 (стандарт международной электротехнической комиссии) и EN 60898 (европейская норма) по характеристикам срабатывания выключатели бывают трех типов: B, C, D.

Тип B - величина тока срабатывания магнитного расцепителя равна Iв= KIн, при K=3–6 (K=I/Iн – кратность тока к номинальному значению). Бытовое применение, где ток нагрузки невысокий и ток к. з. может попасть в зону работы теплового, а не электромагнитного расцепителя.

Тип C - величина тока срабатывания магнитного расцепителя Iс= KIн, при K=5–10. Бытовое и промышленное применение: для двигателей с временем пуска до 1 сек, нагрузки с малыми индуктивными токами (холодильных машин и кондиционеров).

Тип D - величина тока срабатывания магнитного расцепителя Id = KIн более 10Iн. Применение для мощных двигателей с затяжным временем пуска.

Для выбора автоматического выключателя по отключающей способности необходимо выполнить расчет ожидаемого тока короткого замыкания. Как показывает практика, для большинства типа сетей его значение не превышает 4,5 кА. Для обеспечения контроля за другими видами аварий автоматические выключатели снабжают целым рядом дополнительных устройств. Расцепитель минимального напряжения отключает автомат при недопустимом снижении напряжения, ниже 0,7Uн, расцепитель нулевого напряжения срабатывает при напряжении в сети менее 0,35Uн, где Uн – номинальное напряжение в сети. Независимый расцепитель предназначен для дистанционного отключения автоматического выключателя, электромагнитный привод для дистанционного оперирования выключателем. Расцепитель токов утечки на землю обеспечивает непрерывный контроль за состоянием изоляции установки, защиту от опасности возгорания или взрыва.

Тепловые реле (расцепители)
Тепловые реле применяются для защиты электродвигателей от перегрузок недопустимой продолжительности, а также от обрыва одной из фаз. Конструктивно представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток электродвигателя, оказывающий тепловое действие. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. При этом происходит изменение состояния вспомогательных контактов, которые используются в цепях управления и сигнализации. Реле снабжаются биметаллическим температурным компенсатором с обратным прогибом по отношению к биметаллическим пластинам для компенсации зависимости от температуры окружающей среды, обладают возможностью ручного или автоматического взвода (возврата). Реле имеет шкалу, калиброванную в амперах. В соответствии с международными стандартами шкала должна соответствовать значению номинального тока двигателя, а не тока срабатывания. Ток несрабатывания реле составляет 1,05 I ном. При перегрузке электродвигателя на 20% (1,2 I ном), произойдет его срабатывание в соответствии с токовременной характеристикой.

Реле, в зависимости от конструкции, могут монтироваться непосредственно на магнитные пускатели, в корпуса пускателей или на щиты. Правильно подобранные тепловые реле защищают двигатель не только от перегрузки, но и от заклинивания ротора, перекоса фаз и от затянутого пуска.

Недостатком тепловых реле является то, что трудно подобрать реле из имеющихся в наличии так, чтобы ток теплового элемента соответствовал току электродвигателя. Кроме того, сами реле требуют защиты от короткого замыкания, поэтому в схемах должны быть предусмотрены предохранители или автоматы. Тепловые реле не способны защитить двигатель от перегрева двигателя в режиме холостого хода или недогруза. Поскольку тепловые процессы, происходящие в биметалле, носят достаточно инерционный характер, реле плохо защищает от перегруза, связанного с быстропеременной нагрузкой на валу электродвигателя. Если нагрев обмоток обусловлен неисправностью вентилятора (погнуты лопасти или проскальзывание на валу), загрязнением оребренной поверхности двигателя, тепловое реле тоже окажется бессильным, т. к. потребляемый ток не возрастает или возрастает незначительно. В таких случаях, только встроенная тепловая защита способна обнаружить опасное повышение температуры и вовремя отключить двигатель.

Таблица выбора теплового реле типа РТЛ (для пускателей типа ПМЛ )

Таблица выбора теплового реле
Номинальный ток пускателя, А Тип реле Диапазон регулирования тока несрабатывания, А Мощность эл.двигателя кВт, 380В

РТЛ-1007
РТЛ-1008
РТЛ-1010
РТЛ-1012
РТЛ-1014

Отключаем двигатель, нажимаем кнопу «С – стоп», нормально замкнутый контакт размыкается и прекращается подача напряжение к КМ1–катушке, сердечник пускателя под действием пружин возвращается в исходное положение, соответственно контакты возвращаются в нормальное состояние, отключая двигатель. При срабатывании теплового реле - «Р», размыкается нормально замкнутый контакт «Р», отключение происходит аналогично.

В электродвигателе, как и в многих других электротехнических устройствах, могут возникать аварийные ситуации. Если вовремя не принять меры, то в худшем случае из-за поломки электродвигателя, могут выйти из строя и другие элементы энергосистемы.

Наибольшее распространение получили асинхронные электродвигатели. Можно выделить 5 основных видов аварий в асинхронных двигателях:

  • обрыв фазы ОФ статорной обмотки двигателя (вероятность возникновения 40-50%);
  • заторможение ротора ЗР (20-25%);
  • технологические перегрузки ТП (8-10%);
  • понижение сопротивления изоляции обмотки ПС (10-15%);
  • нарушение охлаждения двигателя НО (8-10%).

Любой из этих видов аварий может повлечь выход из строя электродвигателя, а короткое замыкание в двигателе, опасно для питающей сети.

Такие аварийные режимы как ОФ , ЗР , ТП и НО , способны вызвать перегрузку по току в статорной обмотке. В результате этого ток возрастает до 7 Iном и более в течение довольно большого промежутка времени.

Короткое замыкание в электродвигателе может привести к росту тока более чем в 12 Iном в течение очень короткого отрезка времени (около 10 мс).

Учитывая возможные повреждения, и подбирают требуемую защиту.

Защита двигателя от перегрузки. Основные типы.

Тепловая защита – осуществляется путем нагрева током обмотки нагревательного элемента и воздействия его на биметаллическую пластину, которая в свою очередь размыкает контакт в цепи управления контактора или пускателя. Тепловая защита осуществляется с помощь тепловых реле.

Температурная защита — реагирует на увеличение температуры наиболее нагретых частей двигателя с помощью встроенных температурных датчиков (например, позисторов). Через устройства температурной защиты (УВТЗ) воздействует на цепь управления контактора или пускателя и отключает двигатель.

Максимально токовая защита – реагирует на рост тока в статорной обмотке и при его достижении тока уставки отключат цепь управления контактора или пускателя. Осуществляется с помощью максимально токовых реле.

Минимально токовая защита — реагирует на исчезновение тока в статорной обмотке двигателя, например, при обрыве цепи. После чего, подается сигнал на отключение цепи управления контактора или пускателя. Осуществляется с помощью минимально токовых реле.

Фазочувствительная защита – реагирует на изменение угла сдвига фаз между токами в трехфазной цепи статорной обмотки двигателя. При изменении угла сдвига фаз в пределах уставки (например, при обрыве фаз угол увеличивается до 180º) подается сигнал на отключение цепи управления контактора или пускателя. Осуществляется с помощью фазочувствительных реле типа ФУЗ.

Таблица эффективности применения защит от перегрузки:

Тип защиты от перегрузки Надежность защиты
надежно менее надежно не надежно
1 Тепловая защита ТП ОФ; ЗР НО; ПС
2 Температурная защита ТП; НО ОФ; ЗР ПС
3 Максимально токовая защита ЗР ТП ОФ; НО; ПС
4 Минимально токовая защита ОФ НО; ПС; ТП; ЗР
5 Фазочувствительная защита ТП; ОФ; ЗР НО; ПС

Одним из эффективных средств защиты двигателя является автоматический выключатель.

Автоматический выключатель, обладая максимально токовой защитой, что позволит защитить двигатель от чрезмерного роста тока в цепи статорной обмотки, например при обрыве фазы, или повреждении изоляции. При этом он защитит питающую цепь от короткого замыкания в двигателе.

Автоматический выключатель, имеющий в своем составе тепловой расцепитель, расцепитель минимального напряжения, способен защитить двигатель и от других нештатных режимов.

В настоящее время, это одно из наиболее эффективных защитных устройств асинхронных двигателей и цепей, в которых они работают.

Общие правила выбора защиты асинхронных двигателей.

Все двигатели необходимо защищать от короткого замыкания, а электродвигатели, работающие в режиме S1, должны иметь защиту от перегрузки по току.

Электродвигатели, обмотки которых при запуске переключаются с «треугольника» на «звезду», желательно защищать трехполюсными тепловыми реле с ускоренным срабатыванием в неполнофазных режимах. Для электродвигателей, работающих в повторно-кратковременных режимах, рекомендуется предусматривать встроенную температурную защиту. Двигатели, работающие в кратковременном режиме S2 с возможным заторможением ротора без технологического ущерба, следует оснащать тепловой защитой. В случае, если заторможение ротора влечет за собой технологический ущерб, следует применять температурную защиту.

Тепловые реле предназначены в основном для защиты двигателей в режиме S1. Допустимо применение их и для режима S2, если исключено увеличение длительности рабочего периода. Для режима S3 применение тепловых реле допускается в исключительных случаях при коэффициенте загрузки двигателя не более 0,7.

Для защиты обмоток электродвигателя, соединенных в «звезду», могут применяться однополюсные реле (два реле), двухполюсные и трехполюсные реле. Защита обмоток, соединенных в «треугольник», должна осуществляться трехполюсными реле с ускоренным срабатыванием в неполнофазных режимах.

На многоскоростные двигатели нужно предусматривать отдельные реле на каждой ступени скорости при необходимости полного использования мощности на каждой ступени или одно реле с уставкой, выбранной по току ступени наибольшей скорости для двигателей с вентиляторной нагрузкой.

Номинальный ток тепловых элементов реле должен выбираться по номинальному току двигателя так, чтобы номинальный ток двигателя находился между минимальной и максимальной уставками реле по току.

На электротехническом рынке можно найти и другие специализированные устройства защиты электродвигателей, разумеется, цена у них будет значительно отличаться от автоматических выключателей. У себя в проектах я применяю лишь автоматы, контакторы с тепловым реле, устройства плавного пуска и частотные преобразователи, которые имеют встроенную защиту электродвигателей.

Тепловое реле используют для защиты асинхронных электродвигателей от токов перегрузки. Конструктивно тепловые реле представляют собой набор биметаллических расцепителей (по одному на каждую фазу), по которым протекает ток, оказывающий на пластины тепловое действие. Под действием тепла происходит изгиб биметаллической пластины, приводящий в действие механизм расцепления. Основной характеристикой теплового реле является зависимость времени срабатывания от тока нагрузки (времятоковая характеристика), пример которой показан на рисунке.

На графике ось Х представляет соотношение реально протекающего тока I к номинальному току устройства Iн. Кривая 1 соответствует допустимому времени воздействия тока через устройство до его разрушения. Тогда логично выбрать тепловое реле, время срабатывания которого для заданного тока через устройство будет менее или, в крайнем случае, равно допустимому времени воздействия такого тока на устройство (кривые 2 и 3 для разных времятоковых характеристик тепловых реле). Например, при превышении тока нагрузки I на 20% от номинального тока Iн (соотношение 1,2 — показано красной стрелкой) тепловое реле с времятоковой характеристикой 2 отключит устройство от сети через ~500 cек, в то время как допустимое воздействие такого тока I до разрушения устройства (см. кривая 1) равно около ~6000 cек.

Реле имеет шкалу, калиброванную в амперах. Обычно шкала соответствует значению тока уставки (тока несрабатывания реле). Срабатывания реле происходит в пределах 5-20% от превышения тока
уставки током электродвигателя. Т.е., при перегрузке электродвигателя на 5-20% (1,05*Iн – 1,2*Iн), произойдет срабатывание теплового реле в соответствии с его токовременной характеристикой.

Выбор теплового реле зависит от тока, потребляемого электродвигателем. Величина изменения тока срабатывания реле с помощью регулировки небольшая, поэтому для разных электродвигателей нужно подбирать тепловые реле с подходящими термоэлементами. При пуске электродвигателя пусковой ток примерно в 5-7 раз превышает номинальный рабочий. Но тепловое реле не срабатывает из-за замедления на нагрев биметаллической пластинки. Поэтому тепловое реле выбирается по номинальному току нагрузки или немного больше.

Рекомендуемое превышение тока срабатывания защиты составляет 5% – 20% от номинального тока электродвигателя. Лучше всего сразу выбирать комплект для конкретного электродвигателя из пускателя и теплового реле, например, по таблице:

Мощность
электромотора
кВт (380В)
Реле РТЛ
(для ПМЛ)
Регулировка
тока, А
Реле РТ
(для ПМК)
Регулировка
тока, А
0,37 РТЛ-1005 0,6…1 РТ 1305 0,6…1
0,55 РТЛ-1006 0,95…1,6 РТ 1306 1…1,6
0,75 РТЛ-1007 1,5…2,6 РТ 1307 1,6…2,5
1,5 РТЛ-1008 2,4…4 РТ 1308 2,5…4
2,2 РТЛ-1010 3,8…6 РТ 1310 4…6
3 РТЛ-1012 5,5…8 РТ 1312 5,5…8
4 РТЛ-1014 7…10 РТ 1314 7…10
5,5 РТЛ-1016 9,5…14 РТ 1316 9…13
7,5 РТЛ-1021 13…19 РТ 1321 12…18
11 РТЛ-1022 18…25 РТ 1322 17…25
15 РТЛ-2053 23…32 РТ 2353 23…32
18,5 РТЛ-2055 30…41 РТ 2355 28…36
22 РТЛ-2057 38…52 РТ 3357 37…50
25 РТЛ-2059 47…64
30 РТЛ-2061 54…74