Простые электронные устройства на кмоп-микросхемах

Как уже отмечалось ранее, существуют десятки и сотни самых разнообразных цифровых микросхем. Живописному описанию каждой их них можно было бы посвятить немало страниц.

Однако в целях экономии бумаги и для демонстрации неограниченных возможностей применения всего одной микросхемы из множества других ниже будут рассмотрены простейшие устройства, использующие только одну микросхему — К561ЛЕ5.

Сенсорный пульт управления

Сенсорный пульт управления, позволяющий включать/выключать нагрузку, разработан И.А. Нечаевым (рис. 1) [Р 1/85-49]. Устройство содержит генератор, вырабатывающий импульсы частотой 300...500 Гц.

Их скважность (отношение длительности импульса к паузе) составляет 1:40 и определяется отношением сопротивлений R1 и R2. Если к сенсорной пластинке Е1 приложить палец, начнет заряжаться конденсатор С2.

Скорость и время заряда этого конденсатора зависит от сопротивления между контактами. В соответствии с заряд-но-разрядными процессами будет изменяться величина управляющего сигнала, проходящего через схему управления.

Рис. 1. Схема сенсорного пульта управления.

Изменяя силу и время прижатия пальцев к сенсорным площадкам Е1 и Е2, можно управлять уровнем выходных сигналов, интенсивностью свечения светодиодов HL1 и HL2.

Для настройки схемы при использовании сенсорных площадок различной конфигурации и площади, возможно, придется подобрать емкости конденсаторов С2 и СЗ.

Цветорегулятор

Несложный цветорегулятор можно собрать используя генератор импульсов управляемой скважности (рис. 2). Изменяя соотношение пауза/импульс с помощью потенциометра R2 можно управлять средней силой тока, протекающего через светодиоды HL1 и HL2.


Рис. 2. Схема цветорегулятора.

Если эти светодиоды отличаются по цвету свечения, объединив их под общим светособирающим экраном, можно добиться плавного изменения цвета суммарного свечения. В качестве нагрузки можно включить лампы накаливания, получив таким образом регулятор света. Для этого придется выполнить выходные каскады на более мощных транзисторах.

На рис. 3 показана схема сенсорного выключателя конструкции И.А. Нечаева [Р 4/89-62]. Прикосновение к площадкам Е1 и Е2 позволяет включать или выключать ток в нагрузке (светодиоды HL1 и HL2).


Рис. 3. Схема сенсорного выключателя.

Работает сенсорный выключатель следующим образом: в момент включения питания конденсаторы С1 и С2 разряжены, на входах соответствующих логических элементов устанавливаются логический нуль (выводы 1, 2 микросхемы DD1) и логическая единица (выводы 3, 5, 6 микросхемы DD1).

Соответственно, на выходе второго логического элемента установится логический нуль, а на выходе третьего — логическая единица, четвертого — снова нуль. Следовательно, один из элементов нагрузки — светодиод — будет включен, другой — выключен.

Резистор R3 создает цепь положительной обратной связи, обеспечивающей устойчивое состояние сенсорного выключателя. Для того чтобы переключить нагрузку, достаточно коснуться пальцем до сенсорных площадок Е1 и Е2.

С конденсатора С2 уровень логической единицы окажется поданным через сопротивление пальца и резистор R1 на вход первого логического элемента.

Поскольку на входе первого элемента устанавливается значение логической единицы, все остальные логические элементы одновременно изменят свое состояние. Выходные каскады переключатся.

На конденсаторе С1 установится значение логической единицы, на конденсаторе С2 — логического нуля. Для повторного переключения элементов схемы необходимо снова прикоснуться к сенсорным площадкам.

Это прикосновение приведет к очередной перезарядке конденсаторов С1 и С2 и переключению схемы в другое устойчивое состояние.

Сенсорный выключатель устойчиво работает в диапазоне питающих напряжений от 6 до 12 6. Взамен светодиодных индикаторов или параллельно им может быть включена и иная нагрузка, например, обмотка реле, управляющего работой бытовой техники, генератор звуковых или световых сигналов и т.п.

Модель электронного светофора

Модель электронного светофора (рис. 4) позволяет поочередно переключать разноцветные светодиоды, имитируя работу настоящего светофора [Рл 10/98-15].

Времязадающая цепь генератора (R2, С2) определяет частоту переключения зеленого и красного светодиодов, а цепь R1, С1 определяет время свечения желтого светодиода. Продолжительность свечения зеленого и красного светодиодов составляет около 10 сек и определяется постоянной времени R2C2, где сопротивление выражено в МОм, а емкость — в мкФ.


Рис. 4. Схема электронного «светофора».

Светофон

Светофон (рис. 5) представляет собой электронную игрушку — звуковой генератор [Р 1/90-60]. Частота генерации определяется уровнем освещенности чувствительного к свету (hv) элемента R1 (фотосопротивления, фотодиода) при приближении к нему руки. Для того чтобы звучание происходило по желанию «музыканта», включение звука происходит при отпускании пальца от сенсорных площадок Е1 и Е2.


Рис. 5. Схема светофона.

При использовании фоточувствительных приборов различного типа вероятно потребуется подбор емкости конденсатора С1, а также включение параллельно (или последовательно) фоточувствительному элементу (фотосопротивлению, фотодиоду) резисторов, задающих диапазон изменения генерируемой звуковой частоты.

Отметим попутно, что при самостоятельной доработке устройства в качестве управляющего элемента (рис. 5) можно использовать термосопротивление, имеющее малую тепловую инерцию, например, бусинкового типа.

Устройство, полученное при этом, можно наименовать термофоном или эолофоном (от греческого aiolos — ветер и phone — голос, звук) — оно будет изменять частоту звука при обдувании терморезистора.

Электромузыкальный прибор, управляемый наэлектризованным предметом (электронофон), можно получить, включив полевой транзистор вместо резистора R1.

Терменвокс

Идея терменвокса была предложена в эпоху раннего «средневековья» радиоэлектроники — на рубеже 20-30-х годов XX века изобретателем и музыкантом Львом Терменом.

В основу действия этого электромузыкального инструмента заложен принцип сопоставления (вычитания) частот двух генераторов.

Один из генераторов является эталонным, второй — управляется приближением (удалением) ладони руки. Чем ближе ладонь, тем заметнее уход частоты второго генератора, тем выше звук на выходе устройства.


Рис. 6. Схема простого самодельного терменвокса.

Модель терменвокса, одного из самых первых электромузыкальных инструментов, может быть собрана по схеме на рис. 6. Это устройство является упрощенной модификацией схемы Э. Апрелева [М 6/92-28].

Сигналы двух генераторов вычитаются в специальном смесителе сигналов. Разностная частота поступает на звукоизлучатель или усилитель низкой частоты.

Исходная частота работы генераторов близка к 90 кГц. Антенной устройства является медный или алюминиевый прут диаметром 2...4 мм длиной 25...40 мм.

Разумеется, представленная на рис. 6 схема формирования звука заметно упрощена. В частности, для «реального» инструмента обязательно необходима регулировка громкости звучания инструмента. Для этого обычно используют аналогичный второй канал.

Изображенная на рис. 6 наиболее упрощенная модель терменвокса построена на основе двух генераторов, выполненных на микросхеме.

Начальная частота генерации обоих генераторов одинакова и устанавливается конденсатором СЗ и потенциометром R1. Выходные сигналы с генераторов через диоды VD1 и VD2 поступают на вход усилителя низкой частоты (транзистор VT1).

При приближении руки к антенне WA1 изменяется частота работы верхнего по схеме генератора, что вызывает появление звука изменяющейся тональности в телефонном капсюле.

Оригинальный металлоискатель, реагирующий на появление металлического (токопроводящего) предмета в поле антенны устройства также может быть собран по схеме на рис. 6.

В сочетании с обычным металлоискателем это позволит более уверенно распознавать различные предметы (магнитные, диамагнитные, токопроводящие и токонепроводящие), попадающие в поле действия поисковой катушки или электрода.

Электромузыкальный инструмент

На микросхеме DD1 К561ЛЕ5 (рис. 7) может быть собран электромузыкальный инструмент [Рл 9/97-28]. Генератор импульсов на трех инверторах микросхемы DD1 управляется ключами S1 — Sn.

Генератор прямоугольных импульсов будет работать на частоте, определяемой подключаемыми к общей шине резисторами R1 — Rn (десятки, сотни кОм).


Рис. 7. Схема электромузыкального инструмента на микросхеме.

Ключи-клавиши S1 — Sn и ключ S2 должны замыкаться единовременно (зависимо). Как упростить коммутацию, исключив ключ SA2, следует подумать самостоятельно. Сигнал звуковой частоты через усилительный каскад (транзистор VT1) поступает на телефонный капсюль BF1 или внешний усилитель.

Индикатор электрического поля

Индикатор электрического поля или искатель электропроводки простейшего типа может быть собран по схемам, представленным на рис. 8 и 11 [Рл 9/98-16].

Входы неиспользуемых инверторов /ШОГ7-микросхем необходимо соединить с общим проводом или шиной питания (рис. 8). При приближении индикатора к сетевому проводу в первой схеме вырабатываются звуковые сигналы, воспроизводимые пьезокерамическим излучателем, во второй схеме устройство реагирует на переменное электрическое поле звуковыми сигналами.


Рис. 8. Схема искателя электропроводки.


Рис. 11. Схема индикатора электрического поля.

Фотореле, термореле

Фото- или термореле может быть выполнено по схеме, приведенной в книге Л.Д. Пономарева и А.Н. Евсеева (рис. 9). Устройство содержит регулируемый резистивный делитель напряжения, состоящий из резистора-датчика R1 и потенциометра R2.

К средней точке этого делителя подключен вход триггера Шмитта, составленный из двух логических элементов КМОП-млк-росхемы. К выходу триггера подсоединены эмиттерный повторитель и тиристорный коммутатор постоянного тока. Вместо тиристора может быть использован его транзисторный аналог.


Рис. 9. Схема фотореле, термореле.

При изменении сопротивления датчика триггер Шмитта переключается из одного устойчивого состояния в другое.

Соответственно, выходной сигнал через согласующий эмиттер-ный повторитель подается на управляющий электрод тиристора VS1. Происходит включение тиристора, срабатывает реле К1 или иная нагрузка. Для отключения нагрузки необходимо «сбросить» состояние тиристора, т.е. кратковременно отключить питание.

Такая схема может быть использована для контроля технологических и иных процессов, предупреждения критических и аварийных ситуаций, оповещения персонала о нештатном режиме работы оборудования и т.д.

Для того чтобы устройство самостоятельно включалось и отключалось, вместо тиристора следует установить кремниевый транзистор, рассчитанный на ток нагрузки.

Индикатор перегорания предохранителя

Индикатор перегорания предохранителя Л. Тесленко (рис. 10) содержит генератор импульсов на микросхеме и светодиодный индикатор [Р 11/85-44].


Рис. 10. Схема индикатора перегорания предохранителя.

Когда предохранитель цел, на вход инвертора (вывод 8 микросхемы DD1) подается напряжение высокого уровня, запрещающее работу генератора.

Стоит перегореть предохранителю, вывод 8 через сопротивление нагрузки оказывается присоединенным к общей шине. Генератор начнет работать, при этом светодиод мигает с частотой около 5 Гц.

Для индикации перегорания предохранителя при «оборванной» нагрузке параллельно сопротивлению нагрузки желательно включить резистор величиной около 1 МОм.

Простой металлоискатель

Металлоискатель на микросхеме DD1 K561ЛE5, выполненный по традиционной схеме сравнения частот опорного и поискового генераторов [Р 8/89-65], показан на рис. 12.


Рис. 12. Схема металлоискателя.

Частота опорного генератора определяется емкостью конденсатора С1 и суммарным сопротивлением резисторов R1 и R2.

Частота поискового генератора зависит от параметров LC-контура поисковой катушки (L1, С2). При приближении поисковой катушки к металлическому предмету ее индуктивность меняется, изменяя частоту генерации поискового генератора.

Сигналы с обоих генераторов через развязывающие конденсаторы С4 и С5 поступают на диодный детектор, выполненный по схеме удвоения напряжения.

Нагрузкой детектора является высокоомный телефонный капсюль BF1, и в нем выделяется сигнал разностной частоты. При использовании низкоомного телефонного капсюля может потребоваться дополнительный каскад усиления. Конденсатор С6 шунтирует на общий провод высокочастотные составляющие смешиваемых сигналов.

Поисковая катушка размещена внутри алюминиевого или медного незамкнутого кольца диаметром 200 мм. Диаметр трубки — 8 мм. Для намотки использован провод, например, ПЭЛШО диаметром 0,5 мм.

Количество витков определяется по принципу «сколько войдет». Выводы катушки присоединяют к схеме, а саму трубку соединяют с общей шиной.

Налаживание металлоискателя заключается в установке частоты опорного генератора до появления в телефонном капсюле звуковых сигналов низкой частоты. При этим, возможно, придется подобрать емкость конденсатора С1 или С2.

Устройство для рефлексотерапии

Схема прибора — электронного устройства для рефлексотерапии, разработанного И. Скулкиным — показана на рис. 13 [Рл 2/97-26]. Узел поиска биологически активных точек (БАТ) содержит усилитель на составном транзисторе VT1 — VT3 и генератор импульсов на микросхеме DD1.


Рис. 13. Схема прибора для рефлексотерапии.

Поисковый (активный) электрод (А) представляет собой закругленную иглу диаметром 1 мм. Пассивный электрод (П) состоит из отрезка телескопической антенны.

При поиске БАТ на теле человека этот электрод зажимают в руке. Когда поисковый электрод попадает на БАТ, сопротивление участка кожи резко уменьшается, а устройство реагирует на это включением светодиода.

Полярность напряжения, прикладываемого к биологически активной точке, можно изменять переключателем SA1, а переключатель SA2 переводит устройство из режима поиска БАТ в режим воздействия на них. Частоту и ток воздействия задают потенциометры R2 и R4, соответственно.

Для проверки готовности прибора к работе следует в режиме «Поиск» (SA2) установить максимальный ток воздействия и замкнуть электроды. При этом должен загореться светодиод HL1.

Электронный телеграфный ключ

Электронный телеграфный ключ на одной микросхеме K561J1E5 (рис. 14) выполнен по традиционной для таких ключей схеме [Рл KB и УКВ 1/96-23]. Релаксационный генератор собран на логических элементах с разными RC-цепями, ответственными за формирование посылок тире и точек.


Рис. 14. Схема электронного телеграфного ключа.

При нажатии на телеграфный ключ (замыкании зарядной цепи) заряжается группа конденсаторов С1 — СЗ (тире) или С2, СЗ (точка). Когда напряжение на входе логического элемента DD1.1 превысит определенный пороговый уровень, произойдет его переключение, и на выходе установится значение логического нуля.

Процесс заряда конденсаторов прервется, и они начнут разряжаться через сопротивления R2 и R3. При снижении напряжения на конденсаторах ниже определенного значения первый логический элемент вновь переключится, и процесс зарядки/разрядки конденсаторов повторится.

Этот процесс будет продолжаться до тех пор, пока замкнута контактная группа телеграфного манипулятора. Длительность точек и тире определяется постоянными времени зарядных и разрядных цепей (RC). Конденсаторы С1 — СЗ должны иметь малые токи утечки.

Для звуковой индикации генерируемых телеграфных сигналов предназначен генератор, выполненный на третьем и четвертом элементах микросхемы.

Генератор нагружен на пье-зокерамический излучатель типа ЗП-19. При использовании индуктивного излучателя (телефонного капсюля) последовательно с ним необходимо включить разделительный конденсатор емкостью более 0,1 мкФ.

Одновременно со звуковой, в схему введена световая индикация на светодиоде НИ (АЛ307), что позволяет визуально контролировать наличие телеграфных посылок. Для коммутации цепей передающего устройства использован буферный каскад на транзисторе VT1 (КТ315), нагруженный на реле.

Как и для других простейших телеграфных ключей, использующих подобный способ формирования точек и тире, данной конструкции присущи те же недостатки: необходимость подстройки соотношения продолжительности точек/тире сопротивлением R1 при изменении скорости передачи.

Механическая часть манипулятора может быть изготовлена из отрезка ножовочного полотна с примыкающими к нему контактными группами. В качестве таких контактов можно воспользоваться контактами разобранного крупногабаритного реле.

Многоголосый имитатор звуков

«Многоголосый» имитатор звуков, описанный М. Холодовым (рис. 15), содержит два последовательно включенных и управляемых генератора [Р 7/87-34]. Один из них работает на частоте 1...3 Гц, второй вырабатывает колебания частотой 0,2...2 кГц.

Если в цепь управления (клеммы XS1 и XS2) подключить рези-стивно-емкостной датчик, то на выходе устройства можно получить различные звуковые эффекты, разнообразие проявления которых ограничено только фантазией экспериментатора.

Если ко входу имитатора подключить переменное сопротивление 100 кОм и вращать его ручку, на выходе устройства звук будет напоминать трели соловья, затем щебетание воробья, кряканье утки, кваканье лягушки...


Устройство собрано на микросхеме К561ЛА7 (элементы И-НЕ). Имитатор при желании можно выполнить и на элементах ИЛИ-НЕ (К561ЛЕ5). Для этого потребуется самостоятельная переработка схемы.

Литература: Шустов М.А. Практическая схемотехника (Книга 1), 2003 год.

Данное устройство может найти применение для охраны помещений, дачных домиков, гаражей, сараев, расположенных в местах, где может длительно отсутствовать напряжение питания.

Аккумуляторной батареи напряжением 12в и емкостью 7А·ч хватало на пару месяцев непрерывной работы.

Принцип и алгоритм работы этого устройства очень похож на работу промышленных стандартных охранных систем, для охраны помещений: срабатывает система от размыкания контактов датчика с нормально замкнутыми контактами в режиме охраны. В качестве датчика может быть проволочный шлейф (расcчитанный на обрыв провода при нарушении периметра), герконовый датчик, реагирующий на перемещение куска магнита над его контактами при открывании двери, или же можно применить пассивный инфракрасный датчик заводского изготовления.

Устройство питается от аккумуляторной батареи напряжением 12в, (можно так же запитать его от внешнего источника постоянного тока, адаптера, рассчитанного на ток порядка 300ма и более). Автором данная сигнализация использовалась для охраны загородной дачи, где нет электроснабжения, для питания использовалась стандартная аккумуляторная батарея на напряжение 12 в ёмкостью 7 А·ч (такие применяются в источниках бесперебойного источника питания компьютеров).

Схема устройства приведена на рисунке (в более удобном формате см. ).


Перед выходом из помещения, включаете тумблер питания SW1 , установленный на самом корпусе устройства или скрытно возле самого блока. О включении свидетельствует состояние индикаторов (HL1 установлен на блоке, а HL2 вынесен наружу так, чтобы его можно было видеть с наружной стороны помещения, но при этом сам светодиод должен быть недоступен злоумышленникам). Расстояние от блока до места установки индикатора HL2 может составлять несколько метров.

Закрываете дверь (датчик S1 замыкает свои контакты становясь в исходное начальное положение). С момента включения схема не чувствительна к изменению состояния контактов датчика S1 на протяжении около 60 сек, за это время можно спокойно закрыть дверь и выйти наружу, где визуально можно контролировать состояние системы по состоянию индикатора HL2 .

Пока время блокировки на выход не закончилось, светодиод горит постоянно, как только схема перешла в режим охраны, светодиоды HL1 и HL2 начинают мигать короткими импульсами примерно 1 раз в 4 сек, что экономит потребление тока (в ждущем режиме потребляемый схемой ток около 2 ма). Теперь схема в режиме охраны.

При открывании двери злоумышленником, контакты геркона (или концевого выключателя с нормально замкнутыми контактами), установленного на косяке двери, размыкаются, и сразу же включается сирена. Одновременно запускается таймер, ограничивающий время работы сирены(около 40 сек). После истечения этого времени сирена замолкает, а система снова в ожидании нового закрывания-открывания двери.

Схема срабатывает не от изменения логического уровня на входепри размыкании контактов, как у большинства подобных схем, а от перепада напряжения на конденсаторе С1 в этот момент, вследствие чего формируется короткий запускающий импульс, по нарастающему переднему фронту которого и происходит запуск, на спадающий фронт импульса схема не чувствительна.

Для снятия с охраны хозяин нажимает и отпускает скрыто установленную кнопку К1 . Вместо кнопки можно использовать в скрытом месте замурованный в стену геркон.Нажатие кнопки заблокирует датчик двери, сделает его не чувствительным на 60 сек. Произошла блокировка сигнализации после этих действий или нет, можно определить по индикатору HL2 - он должен перестать мигать и гореть постоянно на протяжении 60 сек. По прошествии этого времени система снова сама становится на охрану, если за это время не была открыта дверь и сигнализация не отключена выключателем SW1 .

Чтобы открыть дверь своими ключами, после этого зайти в помещение и отключить всю систему, выключив SW1 , 60 сек вполне достаточно, а если это будет подбор ключей или открывание отмычкой, времени уйдет гораздо больше, и даже если злоумышленник сумеет открыть замок и зайти в помещение, но не будет знать место, где отключается охранная система, сирена сработает через 60 секунд.

Длительность времени блокировки на выход-вход определяется конденсатором С5 , время звучание сирены определяется конденсатором С3 . При наладке временных интервалов до желаемой величины конденсаторы следует отпаивать и припаивать на выведенных из платы длинных проводниках 2-5 см, чтобы температура нагрева паяльником не вносила свои погрешности. Когда будет выставлено желаемое время, нужно впаять конденсаторы в плату, убрав эти проводки, и дать плате остыть до температуры помещения (временные интервалы критичны к окружающей температуре, при повышении уменьшаются, при охлаждении увеличиваются, но незначительно).

При монтаже положение геркона S1 отрегулировать относительно магнита так, чтобы при открывании двери происходило размыкания контактов геркона, а при закрытой двери контакты геркона были замкнуты. Магнит нужно расположить на верхнем торце двери, ближе к петлям, а геркон на косяке двери напротив магнита (регулируется по месту при наладке).

Питается устройство, как уже было сказано, от автономного источника питания, которым может служить аккумулятор на 12 в. Сирена от автомобильной охранной системы на 12 в. В схеме применены недорогие доступные элементы, номиналы резисторов и конденсаторов не критичны и могут отклоняться от указанных в ту или иную сторону на 10%. Микросхема IC1 К561ЛН2 , или её импортный аналог CD4069 . Диоды обязательно все кремниевые, любые, можно из отечественных КД521 . Транзистор Т1 полевой N-канальный мощный (или средней мощности), вместо указанного на схеме можно применить любые аналоги со схожими характеристиками. Транзистор Т2 - любой NPN, типа КТ315 или что то в этом роде. Оптопара подойдёт тоже любая из доступных.

Науменко Владимир
г. Калининград
Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Рис. Схема индикатора перегорания предохранителя в цепи постоянного тока на двухцветном светодиоде
Пока предохранитель FU1 исправен, напряжение источника питания поступает на обе части светодиода HL1 одновременно. Если бы токи через них были близки по значению, то их общий цвет свечения был бы желтый или оранжевый. Однако, поскольку ВАХ светодиодов красного и зеленого свечения заметно различаются (ВАХ светодиода красного свечения идет круче), большая часть тока будет протекать именно через «красный» светодиод. Суммарный цвет свечения при параллельном включении двухцветного светодиода АЛС331А при исправном предохранителе будет красно-оранжевым.
При перегорании предохранителя светодиод красного свечения останется подключенным к источнику питающего напряжения, а зеленого - окажется отключенным. Поэтому общий цвет свечения светодиода станет красный, что и явится сигналом о выходе из строя предохранителя. Светодиод АЛС331А можно заменить двумя отдельными светодиодами красного и зеленого цветов свечения, например, АЛ307Б и АЛ307В (рис. 8.4).
Для того чтобы разница в суммарном цвете свечения была более заметна, начальные токи в светодиодах разного цвета свечения выравнивают. Проще всего это достигается за счет включения дополнительного диода последовательно с «красным» светодиодом (рис. 8.4). Происходит выравнивание падений напряжения на левой и правой ветвях индикаторов, через светодиоды протекают примерно равные токи, следовательно, суммарный цвет свечения светодиодов будет соответствовать цветовому оттенку, промежуточному между красным и зеленым цветом.

Рис. 8.4. Улучшенная схема индикатора на светодиодах разного цвета свечения
При перегорании предохранителя ток протекает только через светодиод красного свечения.
Индикаторы по схемам рис. 8.3 и 8.4 рекомендуются ля использования в устройствах, питающихся от источников наряжения до 3 В. Такое ограничение обусловлено тем, что при пе-егорании предохранителя почти все питающее напряжение (за ычетом падения напряжения на светодиоде HL1 и диоде VD1) эступает на резистор R1, и светодиод HL2 оказывается обрат-эсмещенным. При превышении этого напряжения в обратносме-,енных светодиодах происходит лавинный пробой, а поскольку зличина токоограничивающего резистора невелика, светодиод ожет быть поврежден.
Для защиты светодиодов от пробоя обратным напряжением устройство индикации надо ввести еще два диода, как показано i рис. 8.5 . Тогда диод VD3 будет выполнять роль защиты, а)2 - компенсировать напряжение на нем.
Сопротивление резистора R1, как и в предыдущих случаях, >жно определить как отношение разности напряжения питания и дения напряжения на светодиоде (и включенном последова-пьно ему диоде) к току через светодиод.
Индикатор перегорания предохранителя (рис. 8.6) включен следовательно с нагрузкой и параллельно предохранителю .

Рис. 8.5. Схема индикатора перегорания предохранителя с защитой светодиодов от пробоя обратным напряжением

Рис. 8.6. Схема индикатора перегорания предохранителя для переменного и постоянного тока
В случае перегорания предохранителя и при коротком замыкании в нагрузке ток протекает через индикатор. Диод VD1 и стабилитрон VD2 обеспечивают рекомендованный для светодиодов режим работы, резистор R1 ограничивает предельный ток через светодиод. Устройство работоспособно и в цепях постоянного тока при условии его подключения в соответствующей полярности.
Недостатком устройства является то, что светодиод при высокоомной нагрузке или разрыве цепи нагрузки светится очень слабо или совсем гаснет. Кроме того, через нагрузку даже при перегоревшем предохранителе протекает значительный ток (10...20 мА).
Более простая, но не лишенная тех же недостатков, схема индикатора перегорания предохранителя, работающая как в цепях переменного, так и постоянного тока, показана на рис. 8.7.
Для индикации перегорания предохранителя FU1 (рис. 8.8) был использован или двухцветный светодиод, или пара менее дефицитных разноцветных светодиодов HL1 и HL2, например, зеленого и красного цвета свечения . При исправном предохранителе светится только «зеленый» светодиод HL1. Как только предохранитель перегорает, этот светодиод обесточивается, ток начинает протекать через последовательную цепочку, состоящую из диода VD1, стабилитрона VD2, светодиода HL2 и диода VD3.

Рис. 8.7. Схема индикатора перегорания предохранителя для цепей переменного и постоянного тока

Рис. 8.8. Схема индикатора перегорания предохранителя на двух светодиодах
Диод VD3 обеспечивает защиту светодиодов от пробоя при отрицательной полуволне сетевого напряжения.
Рассмотренные ранее индикаторы перегорания предохранителя были недостаточно экономичны, поскольку в своем большинстве нерационально расходовали ресурсы элементов питания: индицирующий элемент - светодиод - был постоянно подключен параллельно цепи питания и постоянно потреблял ток до 20 мА.
Более экономичными индикаторами являются устройства, схемы которых приведены на рис. 8.9 и 8.10 . Ток, потребляемый индикаторами в режиме ожидания, не превышает 1...2 мА. При перегорании предохранителя транзистор VT1 открывается, включается сигнализатор аварии - светодиод HL1.
Устройство, схема которого приведена на рис. 8.10, можно использовать и в цепях переменного тока.
Оба устройства рассчитаны на питание от источника 9 Б. При иных напряжениях питания потребуется соответствующая коррекция резистивных элементов.

Рис. 8.9. Схема светодиодного индикатора перегорания предохранителя для цепей постоянного тока

Рис. 8.10. Схема светодиодного индикатора перегорания предохранителя для постоянного и переменного тока
Обычно для индикации перегорания предохранителя используют низковольтные трехполюсники постоянного тока: при срабатывании сигнализации можно наблюдать непрерывное свечение светодиода.
Перегорание предохранителя или иное размыкание цепи системы токовой защиты устройство (рис. 8.11) индицирует синхронными посылками коротких звуковых и световых сигналов .
Индикатор выполнен в виде двухполюсника, включаемого параллельно предохранителю в цепь постоянного или переменного тока напряжением 10... 1000 Б с частотой до 1 кГц и выше. В состав устройства входит резистивныи ограничитель тока - составной времязадающий резистор R1, R2, мостовой диодный выпрямитель (VD1 - VD4), элемент звуковой (BQ1) и световой (HL1) индикации и негатрон, выполненный на транзисторах VT1, VT2 и резисторах R3, R4.

Рис. 8.11. Схема индикатора перегорания предохранителя для постоянного и переменного тока
Роль времязадающего конденсатора в устройстве выполняет пьезокерамический излучатель BQ1, который, если использовать только светодиодную индикацию, можно заменить конденсатором емкостью 0,022...0,5 мкФ.
При перегорании предохранителя (размыкании цепи защиты) на индикатор подается напряжение сети, а устройство генерирует прерывистые световые и звуковые сигналы (щелчки). Предполагается, что сопротивление нагрузки после срабатывании защиты (перегорания предохранителя) находится в пределах от 0 до нескольких МОм. Для индикации перегорания предохранителя при оборванной цепи нагрузки параллельно ей следует включить резистор сопротивлением 1...2 МОм. Остаточный ток, протекающий через нагрузку и индикатор при напряжении сети 220 В, не превышает 1 мА.
Для индикации обрыва в цепи питания радиоэлектронного или электросилового оборудования предназначено устройство (рис. 8.12), которое может быть подключено параллельно элементу защиты - плавкому или тепловому предохранителю, коммутатору нагрузки и т.д. .

Рис. 8.12. Схема индикатора обрыва питания в цепи переменного или постоянного тока
Индикатор можно применять в цепях постоянного и переменного (до 1 кГц) тока напряжением от 10 до 1000 В. Максимальный ток, протекающий через индикатор и короткозамкнутую нагрузку при срабатывании элемента защиты, ограничен резисторами R1 и R2 - при напряжении 220 В ток не превышает 0,5 мА. При работе на пониженном напряжении (менее 100 В) сопротивление резисторов R1 и R2 можно уменьшить.
Индикатор содержит генератор импульсов, состоящий из элемента с отрицательным динамическим сопротивлением (лавинный транзистор К101КТ1Г либо его аналог К162КТ2 структуры р-п-р, включенный инверсно) и цепочки последовательно включенных резисторов R1, R2 и сопротивления нагрузки RH, a также времязадающего конденсатора С1. Для индикации работы генератора использован светодиод HL1 и телефонный капсюль BF1. Лавинный транзистор можно заменить его аналогом на транзисторах VT2, VT3. Он подключается вместо VT1 (рис. 8.12) к точкам А и В. Громкость звука и яркость вспышек, а также их частоту можно отрегулировать подбором емкости конденсатора С1.
Чтобы предлагаемое устройство срабатывало при обрыве нагрузки, параллельно ей нужно включить резистор Ra сопротивлением около 1 МОм или конденсатор Са емкостью 300... 1000 пФ.

Сопряжение цифровых, аналоговых сигналов

О Входное нэпряшние
Рис.9.1. Характеристики логических входов.
порядка 1 мА при уровне вход- cxia * ~ передаточная характери-
ного напряжения не более 0,4 В.
Недопонимание этого условия часто приводит к неправильной работе элемента в интерфейсной схеме. Для отрицательных напряжений вход ТТЛ действует как фиксирующий диод, включенный на землю, а для напряжений выше +5 В вход эквивалентен транзистору с небольшим напряжением пробоя (несколько выше +5,5 В). Типичное аначение входного порога логического перехода составляет приблизительно + 1,3 В, но может изменяться в пределах от 0,8 В до +2,0 В-(в худшем случае). Вентили ТТЛ с триггерами Шмитта на

входах (7413, 7414, 74132) имеют гистерезис ±0,4 В и помечаются знаком гистерезиса при графическом изображении (см., например рис. 9.30). Напряжение (/ (обычно обозначается (/кк) равно +5.0 В ±5%.
У элементов КМОП отсутствует входной ток при входных напряжениях в диапазоне от О до и^ът (исключением тока утечки, типичное значение которого составляет мкА). Для сигналов, превышающих диапазон напряжений питания, вход микросхемы представляет собой два фиксирующих диода, Один из которых подключен к положительному полю-
+5В
4 Ям
\иы ты
ТТЛ Ф
1,0 лОм
су источника, а второй - (рис. 9.2). Ток через эти
к земле диоды
никогда, даже кратковременно, не должен превышать 10 мА! Это и есть знаменитые входные диоды, без которых элементы КМОП были бы крайне подвержены повреждениям от статического электричества при ручных манипуляциях (элементы КМОП и так, можно сказать, слишком нежны). Напряжение входного логического порога обычно составляет половину напряжения питания, но может колебаться в пределах от одной трети до двух третей U+ (U+ называется сс). Вентили КМОП с триггерами Шмитта на входах (4093, 40106, 4584) имеют гистерезис от 1 до 2 В; при графическом изображении вентиля они помечаются знаком гистерезиса (cm.j например, рис. 9.8). Напряжение (/ ят может колебаться от +3 до +18 В; наиболее распространены значения +5 и + 12 В.

Рис. 9.2.
а - ТТЛ-вентиль тнль и.
НЕ-И; б - КМОП-вен-
Выходные характеристики. Выходная схема вентиля ТТЛ содержит /гртг-транзистор, включенный на землю, и тгрл-повторитель, подключенный к шине U+ с токоограничивающим резистором в коллекторной цепи, а иногда диодом, включенным последовательно с эмиттером (рис, Когда один из транзисторов насыщен, другой закрыт. В результате элемент ТТЛ может отводить на землю значительный ток (16 мА для 74д:д:) при небольшом падении напряжения (насыщение), а при ВЫСОКОМ уровне на выходе (около +3,5 В) может служить источником тока порядка нескольких миллиампер.

Схема выхода предназначена для управления входами ТТЛ и имеет коэффициент разветвления по выходу 10 (то есть один выход может работать на 10 входов).
Выходная схема элемента КМОП представляет собой двухтактную пару комплементарных полевых МОП-транзисторов, один из которых ОТКРЫТ, а другой ЗАКРЫТ (рис. При малых токах выходная схема ведет себя как резистор
в несколько сотен омов, подключенный к земле или к ши neU+, а при выходных токах, для которых выходное напряжение приблизительно на 1 В отличается от t/пит выход в известном смысле превращается в источник тока. Суммарные выходные характеристики представлены на рис. 9.3.
Здесь приведены зависимости выходного напряжения от выходного тока для обоих
к
,кмоп(аышкии),
отдана тока
ЛТЛ (ВЫСОКИЙ)

шоп(низкий],
отвод тока ПЛ(НИЗКИЙ), отвод тока

Вьйодной ток
Рис. 9,3. Выходные характеристики логических вентилей.
состояний - ВЫСОКОГО и НИЗКОГО. Для упрощения рисунка выходной ток показан положительным. Заметим, что в элементах КМОП выходы в любом случае подключены либо к земле^ либо к шине U+, что обеспечивает при отсутствии перегрузки полный перепад напряжения питания. При нормальном использовании выходы КМОП управляют входами КМОП. Так как входной ток отсутствует (за исключением токов заряда небольшой входной емкости), на выходах происходит полный перепад до С/+или до нуля. Для сравнения отметим, что уровни ТТЛ в типичном случае составляют 50 мВ (НИЗКИЙ) или +3,5 В (ВЫСОКИЙ), если в качестве нагрузки используются также элементы ТТЛ. При включении нагрузочного резистора (почти любого номинала) ВЫСОКИЙ уровень на выходе элемента ТТЛ приближается к +5 В.
9.03. Сопряжение ТТЛ и КМОП
Для того чтобы не испытывать затруднений при работе с обоими семействами, нужно знать, как элементы этих семейств стыкуются друг с другом. На элементах КМОП реализованы некоторые изящные функции, которых нет на ТТЛ. Имея систему на элементах ТТЛ, работающую с невысокой скоростью, вы без труда можете добавить к ней некоторые функции, выполняемые на элементах КМОП. Кроме того, для облегчения стыковки с внешними устройствами, совместимыми с ТТЛ, а также при согласовании логической КМОП-схемы с кабелем на входах и выходах бывает полезно использовать буферные элементы ТТЛ,

а
/?1 10 кОм
+ 1/сс (3-18 В) *-
Управление КМОП от ТТЛ. Если элемент КМОП работает от напряжения +5 В, то уройни почти совместимы. Единственная трудность заключается в том, что высокий уровеньТТЛ (типичное значение 3,4 Б) яйляется граничным для КМОП и желательно, чтобы он был не ниже +4,3 В. Однако достаточно подключить к выходам ТТЛ нагрузочные резисторы (например, 3,3 кОм, что эквивалентно нагрузке одним элементом ТТЛ), соединенные с шиной U+, и все станет в порядке. Резисторь^ можно устанавливать как на выходах с открытым коллектором, так и с активной нагрузкой.
Если элемент КМОП работает от более высокого напряжения питания, можно также включить нагрузочный резистор, но для этого нужно использовать высоковольтные кристаллы ТТЛ, имеющие
выходы с открытым коллектором. Примерами таких элементов могут служить ИМС 7406 (шесть инверторов), 7407 (шесть буферных каскадов) и 7426 (четыре 2-входовых элемента И-НЕ). Другой способ заключается в использовании преобразователя уровня КМОП типа 40109, на вход которого подаются сигналы относительно источника f/кк (уровни ТТЛ), а на выходе формируются сигналы с уровнями КМОП относительно второго источника и с с- Для того чтобы схема ТТЛ могла управлять элементом КМОП, работающим от источника напряжением t/cc>5 В, контактный вывод Ukk соединяется с источником питания ТТЛ (5 В), а вывод Ucc подключается к источнику питания КМОП. Как и прежде, на стандартных выходах ТТЛ н^до устанавливать нагрузочные резисторы. Третья возможность - это использование л/7Л-транзистора.
ТТЛ
(3-18 В)
ТТЛ + 5
4 401О9
(3-18В)
Г
ТТЛ
рис. 9.4. Преобразование уровня от ТТЛ к КМОП.
Схема такого подключения с точно указанными напряжениями питания приведена на рис. B}В базовой цепи этой транзисторной схемы установлены два резистора, которые создают входной порог, приблизительно равный падению напряжения на двух диодах (так же, как и на реальном входе ТТЛ), обеспечивая хорошую помехоустойчивость. Ускоряющий конденсатор увеличивает скорость переключения (см. разд. 13.22). Иногда резистор отсутствует, и тогда транзистор открыва-

ется при входном напряжении, приблизительно равном 0,7 В. В этом случае достаточная помехоустойчивость не обеспечивается, поскольку в системах ТТЛ по шине земли часто возникают выбросы величиной до 0,5 В (см. 9.14). Заметим, что л/7л-транзистор работает как инвертор. Если быстродействие не лмрет з|1ачения, то величина нагрузочного резистора в схеме с от- ц
крытым коллектором может быть 4/ (,5-18 в) +5
значительно выше. Для повышения помехоустойчивости можно применять меньшие номиналы.
Управление ТТЛ от КМОП.
Если элемент КМОП питается от источника напряжения +5 В, то его можно непосредственно нагрузить одним элементом 1А\.хх или двумя элементами 74LSxx. От бу- +у (5-isв) ферных схем КМОП типа 4049 (шесть инверторов) или 4050 (шесть буферных каскадов) могут непосредственно работать два элемента Т^хх или восемь элементов lALSxx. Буферная схема с открытым стоком типа 40107 (с нагрузочным резистором, подключенным к шине +5 В) может работать на 10 элементов ТАхх или на 40 элементов 74LSxjc.
При питании элементов КМОП сс более высоким напряжением также существует несколько способов сопряжения. В первом методе можно использовать схемы 4049/4050. Для этих ИМС допускается превышение входными уровнями напряжения питания, поэтому контакты Vсс можно соединять непосредственно с цепью +5 В. Это позволит

4 4050
ТТЛ
И 3,3 кОм I
ТТЛ
4010? или 74C9G6
3,3 к Ом
/?, 10 Ом
:Г>ь
X i.
ТТЛ
Рис. 9.5. Преобразование уровня от КМОП к ТТЛ.
обеспечить на выходе перепад напряжения от нуля до +5 В и даст возможность подключать к нему два элемента 14хх или восемь элементов Ibxx. Входной порог в этом случае равен приблизительно Н-2,5 В. Другой метод заключается в использовании элемента 40107 или 74С906, работающего от источника питания КМОП с нагрузочным резистором, подключенным к шине +5 В. Третий метод, как и прежде, основан на применении лрл-транзистора. Схемы показаны на рис. Как и в предыдущем случае, транзисторный каскад - инвертирующий.

9.04. Управление входами ТТЛ и КМОП
Механические ключи в качестве устройства ввода. Если известны входные характеристики управляемой логической схемы, то довольно легко управлять цифровыми входами от переключателей, клавиатуры, компараторов и т. д. Проще всего здесь использовать резистор, подключенный к шине питания (рис. 9.6). При работе с элементами ТТЛ, принимая во внимание их входные характеристики,
3,3 кОМ
10 кОи
ТТЛ
Рис. 9.6. Управ пение логическими элементами от механических ключей (без
защиты от дребезга).
лучше, когда резистор коммутируется на землю. В этом случае ключ дает хороший отвод тока при НИЗКОМ уровне на входе, а резистор обеспечивает для ВЫСОКОГО уровня напряжение +5 В, создавая высокую помехоустойчивость. Кроме того, удобно иметь цепь возврата на землю через ключ.
Вариант схемы, в котором резистор подключается к земле, а ключ замыкается на шину +5 В, использовать нежелательно, поскольку в этом случае для того, чтобы обеспечить НИЗКИЙ уровень ТТЛ (порядка нескольких десятых вольта), потребуется резистор с не- большим сопротивлением (например, 220 Ом) и через замкнутый тумблер будет протекать довольно большой ток. При разомкнутом ключе (наихудшие условия с точки зрения наводок) помехоустой-. чивость предыдущей схемы составляет не менее 3 В, тогда как во второй схеме она может упасть до 0,4 В (для стандартного элемента ТТЛ входной ток равен -1,6 мА, а порог НИЗКОГО уровня составляет -fO,8B). Кроме того, как будет показано ниже, входы ТТЛ нежелательно соединять непосредственно с источником +5 В.
Что касается элементов КМОП, то, поскольку их входы не потребляют тока, а типовое значение порогового уровня составляет половину t/cc, здесь с одинаковым успехом могут применяться оба способа подключения резистора. На практике один контакт ключа принято заземлять, однако если для упрощения схемы ВЫСОКИЙ уровень на входе желательно создавать с помощью замкнутого ключа, резистор можно запаять на землю. Все три метода иллюстрируются на рис. B}

1 2 3 4 ... 59

Электротехника

Электрическую цепь (рис. 12, а) образуют источники электрической энергии 1, ее прием­ники 3 (потребители) и соединительные провода. В электрическую цепь обычно включают также вспомогательное оборудование: аппараты 4, служащие для включения и выключения электри­ческих установок (рубильники, переключатели и др.), электроизме­рительные приборы 2 (амперметры, вольтметры, ваттметры), за­щитные устройства (предохранители, автоматические выключатели).
В качестве источников электрической энергии применяют глав­ным образом, электрические генераторы и гальванические элементы или аккумуляторы. Источники электрической энергии часто назы­вают источниками питания.
В приемниках электрическая энергия преобразуется в другие виды энергии. К приемникам относятся электродвигатели, различ­ные электронагревательные приборы, лампы накаливания, электро­литические ванны и др.
Электрическая цепь может быть разделена на два участка: внешний и внутренний. Внешний участок, или, как говорят, внеш­няя цепь, состоит из одного или нескольких приемников электри-
Рис. Простейшая электрическая цепь постоянного тока (а) и ее принципиальная схема (б)
ческой энергии, соединительных проводов и различных вспомога­тельных устройств, включенных в эту цепь. Внутренний участок, или внутренняя цепь,- это сам источник.
Изображение электрических цепей и их элементов. В схемах реальных электрических устройств (электровозов, тепловозов и др.) отдельные элементы имеют свои условные обозначения в соответ­ствии с государственными стандартами.
При составлении расчетных схем элементы электрической цепи, имеющие некоторое сопротивление, например электрические лампы, электронагревательные приборы (в том числе и соединительные провода, если их необходимо учитывать при расчете), изобра­жают в виде сосредоточенных в соответствующем месте схемы ре­зисторов с сопротивлением R (рис. 12, б). То же относится к эле­ментам, имеющим индуктивность (обмотки генераторов, электро­двигателей и трансформаторов) и емкость (конденсаторы). На расчетных схемах их изображают в виде сосредоточенных в соот­ветствующем месте катушек индуктивности и конденсаторов. Источ­ники электрической энергии в схеме электрической цепи часто могут быть представлены в виде идеализированных источников, у которых внутреннее сопротивление Ro = 0.
Для того чтобы учесть внутреннее сопротивление реального источника, в схему вводят изображение резистора с сопротивлением Ro или ставят букву Ro возле условного обозначения источника.
Вспомогательные элементы электрических цепей (аппараты для включения и выключения, защитные устройства, некоторые электро­измерительные приборы) в большинстве случаев имеют малые сопротивления и практически не оказывают влияние на значения токов и напряжений, поэтому при расчете электрических цепей их не принимают во внимание и не указывают на схемах.
Направления тока, напряжения и э. с. в электрической цепи. В схемах электрических цепей направления тока, напряжения и э. изображают стрелками. За положительное направление тока принято направление движения положительных зарядов, т. е. ток во внешней цепи изображают стрелкой I, направленной от положительного зажима источника электрической энергии к отрица­тельному его зажиму (см. ри12, б), во внутренней цепи ток направлен от отрицательного зажима к положительному. Поло­жительное направление напряжения совпадает с положительным направлением тока. Стрелка U направлена от положительного зажима источника или приемника к отрицательному зажиму. Поло­жительное направление э. совпадает с положительным на­правлением тока внутри источника (стрелка Е направлена от отрицательного зажима источника к положительному).
В сложных электрических цепях бывает затруднительно пока­зать действительные направления тока и напряжения на отдельных участках цепи. В таких случаях принимают произвольно какие-либо их направления, которые считают условно положительными, и для этих направлений выполняют расчет электрической цепи. Если в ре­зультате расчета выясняется, что какие-то токи и напряжения имеют положительный знак, то это означает, что выбранные для них направления соответствуют действительности. Если же какие-то токи и напряжения получаются отрицательными, то в действи­тельности они имеют направление, противоположное выбранному.

Тиристорно-транзисторная схема защиты источника питания от короткого замыкания

Тиристорно-транзисторная схема защиты источника питания от короткого замыкания показана на ри5.11. Схема работает следующим образом. При номинальном режиме тиристор отключен, транзисторы устройства, включенные по схеме Дарлингтона, находятся в состоянии насыщения, падение напряжения на них минимально (обычно единицы вольт). При возникновении короткого замыкания в нагрузке начинает протекать ток через управляющий переход тиристора VS1, происходит его включениОткрытый тиристор шунтирует цепь управления составного транзистора, ток через который снижается до минимума.

Ри5.11. Схема защиты источника питания от короткого замыкания
Светодиод HL1 индицирует наличие короткого замыкания в нагрузкB} Схема рассчитана на работу при больших токах, поэтому на самой схеме защиты падает довольно значительная часть напряжения питания и рассеивается, соответственно, большая мощность.
Устройство, описанное ниже, одновременно может выпол-ять роль стабилизатора постоянного и переменного тока боль-юй величины, защищать цепь нагрузки от короткого замыкания, ыполнять роль регулируемой активной нагрузки с предельной ощностью рассеяния сотни бг.
Основой стабилизатора тока является токостабилизирую-(ий двухполюсник, схема которого приведена на ри5.Он представляет собой модифицированный источник тока, описанный работе . Ток через канал полевого транзистора VT1 опреде-чется, преимущественно, напряжением U1 (ри5.12) и может эггь вычислен из выражения: I=U1/RM. Напряжение U1 является 1стыо напряжения +Е, приложенного к двухполюснику, а посколь-/ резистивный делитель R1/R2 обеспечивает прямо пропорцио-1льную зависимость между величинами U1 и +Е, то такое же ютношение будет наблюдаться между током I и напряжением +Е.

Ри5.Токостабилизирующий двухполюсник на основе дифференциального усилителя и полевого транзистора
Эквивалентное сопротивление двухполюсника можно представить как: R3=E/l=ExRM/U1. В свою очередь U1=E*RM/(R1+R2).
Отсюда R3=RM+(R1XRM/R2) или R3=R|/,"<(1+R1/R2). Следова-пьно, ток через двухполюсник можно изменять, регулируя либо личину Ри, либо соотношение сопротивлений делителя R1/R2. in R1»R2 выражение для вычисления эквивалентного сопро-вления двухполюсника упростится: R3=RMxR1/R2.
Практическая схема узла активной нагрузки - стабилизатора постоянного тока - приведена в статье , а ниже, на 5.13 показана возможность использования этого схемного шения для стабилизации переменного тока .



Ри5.13. Стабилизатор переменного (и постоянного) тока с регулируемым током нагрузки от единиц мА до 8 А
Ток в цепи стабилизатора можно плавно регулировать поворотом ручки потенциометра R2 в пределах от нескольких мА до 8 А, причем максимальный ток нагрузки при необходимости можно увеличить еще на порядок, применив вентиляторы, радиаторы, нарастив количество параллельно задействованных полевых транзисторов.

В чем преимущества алгоритмических языков перед машинными?
Основные преимущества таковы: " алфавит алгоритмического языка значительно шире алфавита машинного языка, что существенно повышает наглядность текста программы; " набор операций, допустимых для использования, не зависит от набора машинных операций, а выбирается из соображений удобства формулирования алгоритмов решения задач определенного класса; " формат предложений достаточно гибок и удобен для использования, что позволяет с помощью одного предложения задать достаточно содержательный этап обработки данных; " требуемые операции задаются с помощью общепринятых математических обозначений; " данным в алгоритмических языках присваиваются индивидуальные имена, выбираемые программистом; " в языке может быть предусмотрен значительно более широкий набор типов данных по сравнению с набором машинных типов данных. Таким образом, алгоритмические языки в значительной мере являются машинно-независимыми. Они облегчают работу программиста и повышают надежность создаваемых программ.

Для защиты радиоэлектронного оборудования от токовых перегрузок используют плавкие и тепловые предохранители с использованием биметалла или элементов с памятью формы, а также полупроводниковые предохранители с самовосстановлением, см. главу 7. Своевременная реакция на срабатывание системы защиты радиоэлектронного и электросилового оборудования позволит предупредить развитие аварийной ситуации, устранить причину неисправности.
При срабатывании элементов защиты для оперативного установления причин неисправности или оповещения обслуживающего персонала о наличии аварийной ситуации используют визуальные, звуковые и аудиовизуальные индикаторы отказа элементов схем. Наиболее часто такие устройства используют для индикации перегорания предохранителей.
Устройство (рис. 8.1) для контроля напряжения позволяет индицировать наличие напряжения постоянного тока, а также факт перегорания предохранителя.


Рис. 8.1. Схема индикатора напряжения - индикатора перегорания предохранителя

При штатном режиме работы предохранитель шунтирует цепь, состоящую из резистора R1 и светодиода HL1 красного цвета свечения. Параллельно источнику питания и нагрузке
подключена цепь из светодиода HL2 зеленого цвета свечения и токоограничивающего резистора R2.
При перегорании предохранителя, в случае, если сопротивление нагрузки много меньше сопротивления резистора R2, нагрузка шунтирует цепь из светодиода HL2 и резистора R2. Светится только светодиод HL1 красного цвета. При одновременном перегорании предохранителя и обрыве нагрузки к источнику питания оказывается подключенной последовательная цепь из резисторов R1 и R2 и светодиодов HL1 и HL2. Оба светодиода светятся неярким светом.
При использовании схемы на переменном токе встречно-параллельно светодиодам следует включить защитные слаботочные диоды, например, КД102.
Одна из простейших схем, позволяющая констатировать факт перегорания предохранителя в цепях как постоянного, так и переменного тока , показана на рис. 8.2. Она состоит из элементов, включенных параллельно предохранителю: резистора R1, ограничивающего максимальный ток; диода VD1, защищающего индикатор от неправильного подключения к источнику питания или обратного напряжения при работе устройства на переменном токе и, собственно, самого индицирующего элемента - светодиода HL1. При мощности нагрузки более 15 Вт и постоянном напряжении свыше 27 6 сопротивление резистора (кОм) можно приближенно определить как частное от деления величины питающего напряжения (В) на рабочий ток светодиода (мА).


Рис. 8.2. Схема сигнализатора перегорания предохранителя в цепи постоянного ток а

При токе через светодиод 10...20 мА величина этого сопротивления (кОм) примерно равна 50...10011ПИТ(В). При малых напряжениях в расчетах следует учитывать, что на светодиоде падает напряжение около 2 В, на диоде - 0,5...0,7 В. При работе
сигнализатора на переменном токе величину сопротивления следует уменьшить вдвое.
Недостатком данного сигнализатора, как, впрочем, и многих остальных, является то, что светодиод не светится при наличии высокоомной нагрузки или обрыве в цепи нагрузки.
Схема индикатора перегорания предохранителя в цепи постоянного тока приведена на рис. 8.3. Его основой служит двухцветный светодиод АЛС331А.

Рис. 8.3. Схема индикатора перегорания предохранителя в цепи постоянного тока на двухцветном светодиоде

Пока предохранитель FU1 исправен, напряжение источника питания поступает на обе части светодиода HL1 одновременно. Если бы токи через них были близки по значению, то их общий цвет свечения был бы желтый или оранжевый. Однако, поскольку ВАХ светодиодов красного и зеленого свечения заметно различаются (ВАХ светодиода красного свечения идет круче), большая часть тока будет протекать именно через «красный» светодиод. Суммарный цвет свечения при параллельном включении двухцветного светодиода АЛС331А при исправном предохранителе будет красно-оранжевым.
При перегорании предохранителя светодиод красного свечения останется подключенным к источнику питающего напряжения, а зеленого - окажется отключенным. Поэтому общий цвет свечения светодиода станет красный, что и явится сигналом о выходе из строя предохранителя. Светодиод АЛС331А можно заменить двумя отдельными светодиодами красного и зеленого цветов свечения, например, АЛ307Б и АЛ307В (рис. 8.4).
Для того чтобы разница в суммарном цвете свечения была более заметна, начальные токи в светодиодах разного цвета свечения выравнивают. Проще всего это достигается за счет включения дополнительного диода последовательно с «красным» светодиодом (рис. 8.4). Происходит выравнивание падений напряжения на левой и правой ветвях индикаторов, через светодиоды протекают примерно равные токи, следовательно, суммарный цвет свечения светодиодов будет соответствовать цветовому оттенку, промежуточному между красным и зеленым цветом.


Рис. 8.4. Улучшенная схема индикатора на светодиодах разного цвета свечения

При перегорании предохранителя ток протекает только через светодиод красного свечения.
Индикаторы по схемам рис. 8.3 и 8.4 рекомендуются ля использования в устройствах, питающихся от источников наряжения до 3 В. Такое ограничение обусловлено тем, что при пе-егорании предохранителя почти все питающее напряжение (за ычетом падения напряжения на светодиоде HL1 и диоде VD1) эступает на резистор R1, и светодиод HL2 оказывается обрат-эсмещенным. При превышении этого напряжения в обратносме-,енных светодиодах происходит лавинный пробой, а поскольку зличина токоограничивающего резистора невелика, светодиод ожет быть поврежден.
Для защиты светодиодов от пробоя обратным напряжением устройство индикации надо ввести еще два диода, как показано i рис. 8.5 . Тогда диод VD3 будет выполнять роль защиты, а)2 - компенсировать напряжение на нем.
Сопротивление резистора R1, как и в предыдущих случаях, >жно определить как отношение разности напряжения питания и дения напряжения на светодиоде (и включенном последова-пьно ему диоде) к току через светодиод.
Индикатор перегорания предохранителя (рис. 8.6) включен следовательно с нагрузкой и параллельно предохранителю .

Рис. 8.5. Схема индикатора перегорания предохранителя с защитой светодиодов от пробоя обратным напряжением

Рис. 8.6. Схема индикатора перегорания предохранителя для переменного и постоянного тока

В случае перегорания предохранителя и при коротком замыкании в нагрузке ток протекает через индикатор. Диод VD1 и стабилитрон VD2 обеспечивают рекомендованный для светодиодов режим работы, резистор R1 ограничивает предельный ток через светодиод. Устройство работоспособно и в цепях постоянного тока при условии его подключения в соответствующей полярности.
Недостатком устройства является то, что светодиод при высокоомной нагрузке или разрыве цепи нагрузки светится очень слабо или совсем гаснет. Кроме того, через нагрузку даже при перегоревшем предохранителе протекает значительный ток (10...20 мА).
Более простая, но не лишенная тех же недостатков, схема индикатора перегорания предохранителя, работающая как в цепях переменного, так и постоянного тока, показана на рис. 8.7.
Для индикации перегорания предохранителя FU1 (рис. 8.8) был использован или двухцветный светодиод, или пара менее дефицитных разноцветных светодиодов HL1 и HL2, например, зеленого и красного цвета свечения . При исправном предохранителе светится только «зеленый» светодиод HL1. Как только предохранитель перегорает, этот светодиод обесточивается, ток начинает протекать через последовательную цепочку, состоящую из диода VD1, стабилитрона VD2, светодиода HL2 и диода VD3.


Рис. 8.7. Схема индикатора перегорания предохранителя для цепей переменного и постоянного тока

Рис. 8.8. Схема индикатора перегорания предохранителя на двух светодиодах

Диод VD3 обеспечивает защиту светодиодов от пробоя при отрицательной полуволне сетевого напряжения.
Рассмотренные ранее индикаторы перегорания предохранителя были недостаточно экономичны, поскольку в своем большинстве нерационально расходовали ресурсы элементов питания: индицирующий элемент - светодиод - был постоянно подключен параллельно цепи питания и постоянно потреблял ток до 20 мА.
Более экономичными индикаторами являются устройства, схемы которых приведены на рис. 8.9 и 8.10 . Ток, потребляемый индикаторами в режиме ожидания, не превышает 1...2 мА. При перегорании предохранителя транзистор VT1 открывается, включается сигнализатор аварии - светодиод HL1.
Устройство, схема которого приведена на рис. 8.10, можно использовать и в цепях переменного тока.
Оба устройства рассчитаны на питание от источника 9 Б. При иных напряжениях питания потребуется соответствующая коррекция резистивных элементов.

Рис. 8.9. Схема светодиодного индикатора перегорания предохранителя для цепей постоянного тока


Рис. 8.10. Схема светодиодного индикатора перегорания предохранителя для постоянного и переменного тока

Обычно для индикации перегорания предохранителя используют низковольтные трехполюсники постоянного тока: при срабатывании сигнализации можно наблюдать непрерывное свечение светодиода.
Перегорание предохранителя или иное размыкание цепи системы токовой защиты устройство (рис. 8.11) индицирует синхронными посылками коротких звуковых и световых сигналов .
Индикатор выполнен в виде двухполюсника, включаемого параллельно предохранителю в цепь постоянного или переменного тока напряжением 10... 1000 Б с частотой до 1 кГц и выше. В состав устройства входит резистивныи ограничитель тока - составной времязадающий резистор R1, R2, мостовой диодный выпрямитель (VD1 - VD4), элемент звуковой (BQ1) и световой (HL1) индикации и негатрон, выполненный на транзисторах VT1, VT2 и резисторах R3, R4.

Рис. 8.11. Схема индикатора перегорания предохранителя для постоянного и переменного тока

Роль времязадающего конденсатора в устройстве выполняет пьезокерамический излучатель BQ1, который, если использовать только светодиодную индикацию, можно заменить конденсатором емкостью 0,022...0,5 мкФ.
При перегорании предохранителя (размыкании цепи защиты) на индикатор подается напряжение сети, а устройство генерирует прерывистые световые и звуковые сигналы (щелчки). Предполагается, что сопротивление нагрузки после срабатывании защиты (перегорания предохранителя) находится в пределах от 0 до нескольких МОм. Для индикации перегорания предохранителя при оборванной цепи нагрузки параллельно ей следует включить резистор сопротивлением 1...2 МОм. Остаточный ток, протекающий через нагрузку и индикатор при напряжении сети 220 В, не превышает 1 мА.
Для индикации обрыва в цепи питания радиоэлектронного или электросилового оборудования предназначено устройство (рис. 8.12), которое может быть подключено параллельно элементу защиты - плавкому или тепловому предохранителю, коммутатору нагрузки и т.д. .


Рис. 8.12. Схема индикатора обрыва питания в цепи переменного или постоянного тока

Индикатор можно применять в цепях постоянного и переменного (до 1 кГц) тока напряжением от 10 до 1000 В. Максимальный ток, протекающий через индикатор и короткозамкнутую нагрузку при срабатывании элемента защиты, ограничен резисторами R1 и R2 - при напряжении 220 В ток не превышает 0,5 мА. При работе на пониженном напряжении (менее 100 В) сопротивление резисторов R1 и R2 можно уменьшить.
Индикатор содержит генератор импульсов, состоящий из элемента с отрицательным динамическим сопротивлением (лавинный транзистор К101КТ1Г либо его аналог К162КТ2 структуры р-п-р, включенный инверсно) и цепочки последовательно включенных резисторов R1, R2 и сопротивления нагрузки RH, a также времязадающего конденсатора С1. Для индикации работы генератора использован светодиод HL1 и телефонный капсюль BF1. Лавинный транзистор можно заменить его аналогом на транзисторах VT2, VT3. Он подключается вместо VT1 (рис. 8.12) к точкам А и В. Громкость звука и яркость вспышек, а также их частоту можно отрегулировать подбором емкости конденсатора С1.
Чтобы предлагаемое устройство срабатывало при обрыве нагрузки, параллельно ей нужно включить резистор Ra сопротивлением около 1 МОм или конденсатор Са емкостью 300... 1000 пФ.

В этой статье мы рассмотрим несколько схем роботов, в которых реализованы следующие варианты поведения:
1. Объезжает препятствие при контакте с ним "усиками".
2. Избегает препятствия без контакта (ИК бампер).
3. Упирается "усиками" в препятствие, отъезжает назад, делает поворот, затем продолжает движение.
4. Избегает препятствие с разворотом (ИК бампер).
5. Следует за объектом, сохраняя дистанцию (ИК бампер).

Перед тем как приступить к рассмотрению схем давайте кратко разберем особенности микросхемы L293.

Рис.1. Расположение выводов микросхемы L293D

Внутри нее имеется два драйвера для управления электромоторами.
Моторы подключаются к выходам OUTPUT. Мы имеем возможность подключить два двигателя постоянного тока.
8-й и 16-й выводы микросхемы подключаются к плюсу питания. Поддерживается раздельное питание, т.е. 16-й вывод (Vss) предназначен для питания самой микросхемы (5 вольт), а контакт Vs (8-й вывод) можно подключить к источнику питания для двигателей. Максимальное напряжение силовой части составляет 36 вольт.
Я их разделять не буду и во всех схемах подключу к общему источнику питания.
Минус питания или земля (GND) подключается к выводам № 4, 5, 12, 13. Эти контакты, кроме того, обеспечивают теплоотвод микросхемы, поэтому при пайке на плату для этих выводов желательно выделить увеличенную металлизированную область.
Еще микросхема имеет входы ENABLE1 и ENABLE2.
Для включения драйверов, необходимо наличие логической единицы на этих выводах, проще говоря 1-й и 9-й выводы подключаем к плюсу питания.
Также имеются входы INPUT для управления двигателями.

Рис.2. Таблица соответствия логических уровней на входах и выходах.

Выше представлена таблица, по которой можно понять, что если на вход INPUT1 подать логической единицу, т.е. соединить с плюсом источника питания, а вход INPUT2 - с минусом, то мотор М1 начнет вращаться в определенную сторону. А если поменять местами логические уровни на этих входах, то мотор М1 будет вращаться в другую сторону.
Аналогично происходит и со второй частью, к которой подключается мотор М2.

Именно эта особенность и использована в представленных схемах роботов.

Схема №1. Робот объезжает препятствие при контакте с ним "усиками".

Рис.3. Схема №1. С механическими датчиками препятствий.

После подачи питания моторы будут вращаться в определенную сторону, двигая робота вперед. Это происходит за счет того, что на INPUT1 через резистор R2 поступает сигнал высокого уровня, так же как и на входе INPUT4. Транзистор VT1 надежно закрыт, база стянута на минус питания, на коллектор ток не втекает.
Объяснять я буду по левой части, т.к. обе части симметричны.
На входе INPUT2 через резистор R3 устанавливается логический 0. Судя по таблице (рис.2) мотор вращается в определенную сторону. В правой части схемы происходит тоже самое и робот едет вперед.
В схеме имеются ключи (SB1, SB2), в качестве которых применены SPDT переключатели. На них с помощью термоклея прикрепляются скрепки и получаются датчики препятствий.

Рис.4. Из скрепок сделаны датчики "усики".

Когда такой датчик упирается в препятствие, ключ замыкается и вход INPUT2 оказывается подключенным к плюсу питания, т.е. подается логическая "1". В этот же момент времени открывается и транзистор, вследствие чего логическая единица на входе INPUT1 сменяется логическим нулем. Мотор при нажатой кнопке вращается в другую сторону. Рывками происходят микропереключения и мотор разворачивает робота от препятствия, до того момента, пока датчик перестанет соприкасаться с препятствием.

Как вы уже догадались, переключатели или сами моторы нужно расположить крест-накрест.

Схема №2. Робот избегает препятствия без контакта (ИК бампер)

Еще более интересное поведение можно реализовать, если в качестве датчиков использовать TSOP-приемники для приема инфракрасных сигналов. Это будет некое подобие ИК-бампера.
Итак, теперь схема выглядит таким образом.

Рис.5. Схема №2. С инфракрасными датчиками препятствий.

"Модуль приема ИК" работает так: при поступлении инфракрасного сигнала на TSOP-приемник на его выходе появляется отрицательное напряжение, которое отпирает PNP транзистор, и ток с плюса питания поступает на входную цепь микросхемы. Если в прошлый раз были использованы механические переключатели, с так называемыми усиками из скрепок, то новая схема позволит роботу не врезаться в препятствие, а реагировать на него с некоторой дистанции. Это выглядит так:

Приемная часть выполнена таким образом: два абсолютно одинаковых модуля (левый и правый) скрепленные между собой (рис.8).

В качестве приемников использованы TSOP1136 с рабочей частотой 36 кГц. Расположение выводов представлено на рисунке ниже.

Рис.6. TSOP1136.

С приемниками мы разобрались, но для обнаружения препятствий нужно в пространство перед роботом посылать инфракрасное излучение с определенной частотой. Рабочая частота приемников бывает разная, в моем случае она составляет 36 кГц. Поэтому на микросхеме NE555 был собран генератор импульсов на данную частоту, а к выходу подключены излучающие диоды инфракрасного диапазона.



Рис.7. Схема излучателя на NE555.

На шасси робота закреплен фрагмент макетной платы, на которую можно установить желаемое количество ик-диодов.
На диоды желательно надеть термоусадочные трубочки или что нибудь подобное, чтобы они светили вперед, а не в разные стороны.

Рис.8. ИК бампер.

После подачи питания робот может попятиться назад, это из-за слишком большой чувствительности TSOP-приемников. Они воспринимают отраженный сигнал даже от пола, стен и других поверхностей. Поэтому в схеме излучателя ИК-сигнала (рис.7) использован подстроечный резистор, с помощью него уменьшаем яркость инфракрасных диодов и добиваемся желаемой чувствительности.

Схема №3. Такой робот отъезжает назад от препятствия, делая поворот.

Давайте рассмотрим еще одну интересную схему.

Рис.9. Схема №3.

Когда такой робот упирается в препятствие одним из своих усиков, то он отъезжает назад, делая небольшой поворот, затем после небольшой паузы робот продолжает движение. Поведение показано на анимации ниже:

Эта схема тоже полностью совместима с инфракрасным бампером, от предыдущей схемы.

В схеме появились электролитические конденсаторы между эмиттером и базовыми резисторами транзисторов VT1 и VT2. Появились диоды VD1, VD2 и светодиоды HL1, HL2.
Давайте по порядку разберем, зачем нужны эти дополнительные компоненты.
Итак, когда замыкается переключатель SB1, т.е. первый датчик, ток от плюса питания через диод VD1 и токоограничивающий резистор R1 поступает на базу транзистора. Он открывается, меняя логический уровень на входе INPUT1, на входе INPUT2 уровень тоже меняется.
В этот момент ток также поступает на конденсатор C1 и он заряжается. Мотор М1 резко меняет направление вращения и робот отъезжает назад от препятствия. На видео можно заметить, что второй мотор тоже меняет направление движения, но на более короткий промежуток времени. Это происходит из-за того, что при замыкании датчика SB1, ток от плюса питания поступает также и на правую часть схемы, через светодиод HL2. Светодиоды не только подают кратковременный сигнал о столкновении с препятствием, но и являются гасителем напряжения, поступающего на противоположную половину схемы. Проще говоря, при замыкании ключа SB1, конденсатор C2 заряжается меньше, чем C1. А при замыкании ключа (датчика) SB2 происходит тоже самое, но наоборот - С2 заряжается больше (т.е. напряжение на его обкладках больше). Это позволяет не только отъехать от препятствия, но и немного отвернуться от него. Угол этого отворачивания зависит от емкости конденсаторов C1 и С2. Конденсаторы емкостью 22 мкФ, на мой взгляд, являются оптимальными. При емкости 47 мкФ угол поворота будет больше.
Также на видео можно заметить, что после того, как робот отъезжает назад от препятствия, то присутствует небольшая пауза перед тем как он поедет вперед. Это происходит из-за разрядки конденсаторов, т.е. в некоторый момент времени логические сигналы на входах INPUT уравновешиваются и драйвер на секунду перестает понимать в какую сторону вращать мотор. Но когда C1 и С2 разрядятся, на входах INPUT установятся первоначальные логические уровни.
Диоды VD1 и VD2 препятствуют разрядке конденсаторов через светодиоды HL1, HL2. Без светодиодов схема не работает.

Схема №4. Предыдущая схема с ИК бампером.

Эта схема отличается от предыдущей тем, что вместо механических датчиков здесь использованы инфракрасные (ИК бампер).

Рис.10. Схема №4.

Коллекторы PNP транзисторов VT1 и VT2 при обнаружении препятствия, подадут сигнал на входную цепь микросхемы. Далее всё происходит также, как было описано ранее, только такой робот при обнаружении препятствия перед собой отъезжает назад, делает поворот, затем продолжает движение.
Поведение показано на анимации ниже:

У робота будет более резкое поведение, если уменьшить емкость конденсаторов C1 и C2 например до 1 мкФ (минимальная емкость 0,22 мкФ).

Как сделать так, чтобы робот следовал за объектом?

Во всех схемах, представленных выше, датчики-сенсоры или сами моторы должны быть расположены крест-накрест. А при прямом подключении (когда левый датчик "командует" левым двигателем, правый - правым) робот будет не избегать препятствие, а наоборот следовать за ним. Благодаря прямому подключению можно добиться очень интересного поведения робота - он будет активно преследовать объект, сохраняя определенную дистанцию. Расстояние до объекта зависит от яркости ИК диодов на бампере (настроить).

Еще немного фотографий:


В шасси использованы металлические детали от конструктора. Макетная плата откидывается для удобства замены батареек.


Питание робота осуществляется от 4-х батареек АА.

Варианты изготовления корпуса и шасси для робота ограничиваются только вашей фантазией, тем более в продаже имеется много готовых решений. В моем случае схема будет перенесена на плату, т.к. куча проводов это не эстетично. Также будут установлены аккумуляторы со схемой подзарядки. А какие еще доработки можно произвести или добавить новые функции - это всё вы можете предложить в комментариях.

К этой статье имеется видео, в котором подробно описана работа схем и продемонстрированы разные варианты поведения робота.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Элементы схемы №1 и №2 (кроме ИК бампера)
VT1, VT2 Биполярный транзистор

2N3904

2 Поиск в LCSC В блокнот
R1, R2, R4, R6 Резистор

10 кОм

4 Поиск в LCSC В блокнот
R3, R5 Резистор

4.7 кОм

2 Поиск в LCSC В блокнот
C1 100 мкФ 1 Поиск в LCSC В блокнот
Элементы "модуля приема ИК" на схеме №2, №4
VT1, VT2 Биполярный транзистор

2N3906

2 КТ361, КТ816 Поиск в LCSC В блокнот
R1, R2 Резистор

100 Ом

2 Поиск в LCSC В блокнот
C1, C2 Электролитический конденсатор 10-47 мкФ 2 Поиск в LCSC В блокнот
Элементы "модуля излучения ИК сигнала" рис.7
R1 Резистор

1 кОм

1 Поиск в LCSC В блокнот
R2 Резистор

1.5 кОм

1 Поиск в LCSC В блокнот
R3 Переменный резистор 20 кОм 1 для настройки яркости FD1, FD2 Поиск в LCSC В блокнот
C1 Конденсатор керамический 0.01 мкФ 1 Поиск в LCSC В блокнот
C2 Конденсатор керамический 0.1 мкФ 1