Измерение мощности. Измерение мощности и энергии в электрических цепях

План работы

    Различные методы измерения мощности и способы подключения приборов в цепях постоянного тока.

    Анализ результатов измерений.

Основные теоретические положения

Мощность – физическая величина, равная выполняемой работе за единицу времени, что равносильно скорости изменения энергии системы. В частности, электрическая мощность – это величина, характеризующая скорость передачи или преобразования электрической энергии в другие виды энергии, например, механическую, тепловую, световую и т. д.

Мощность в цепях постоянного тока определяется выражением P = UI , где U – напряжение, приложенное к нагрузке, В, I ток, протекающий через нагрузку, А. Единицей измерения электрической мощности является ватт (Вт). Из приведенного уравнения следует, что мощность P можно определить косвенным методом, измеряя вольтметром напряжение U на нагрузке и амперметром – ток I , протекающий через нагрузку. Перемножив результаты измерений U и I , получим значение мощности.

На рис. 1 приведены две схемы включения вольтметра и амперметра. Выбор той или иной схемы обусловлен допускаемой методической погрешностью измерения. Погрешность зависит от соизмеримости внутренних сопротивлений приборов с сопротивлением нагрузки R н .

Рис. 1. Схемы включения приборов для измерения мощности

в цепи постоянного тока.

Схема рис. 1а применяется, когда сопротивление нагрузки R н много меньше сопротивления вольтметра R в ; а схема рис. 1б – когда сопротивление нагрузки R н много больше сопротивления амперметра R a . Если этими условиями пренебречь и допустить, что R н = R в для схемы рис. 1а и R н = R a для схемы рис. 1б , то относительная погрешность измерения мощности составит 100 %.

Практически удобнее измерять мощность одним прибором – ваттметром. Для определения мощности ваттметру нужна информация о токе и напряжении, и он должен уметь их перемножать. Таким прибором является электродинамический ваттметр, состоящий из подвижной катушки, расположенной внутри неподвижной катушки.

К подвижной катушке подключают напряжение нагрузки, а через неподвижную катушку пропускают ток нагрузки. Взаимодействие магнитных полей катушек заставляет подвижную катушку поворачиваться на угол, пропорциональный мощности. Направление поворота зависит от направления токов в катушках, поэтому включать его в цепь необходимо так, чтобы начала обмоток катушек были подключены в сторону источника питания (генератору). На клеммах ваттметра начала обмоток обозначены звездочкой (*U и *I ). Их называют генераторными зажимами. Если токовый генераторный зажим подключить ошибочно в сторону нагрузки, то стрелка прибора будет отклоняться влево от нулевой отметки и отсчет показаний будет невозможен. Генераторный зажим обмотки напряжения, в целях уменьшения погрешности измерения, может быть включен по схеме рис. 2а или рис. 2б .

Рис. 2. Схема включения ваттметра в цепь постоянного тока.

Схема рис. 2 а применяется, когда сопротивление нагрузки R н много больше сопротивления токовой цепи ваттметра R a ; а схема рис. 2б – когда сопротивление нагрузки R н много меньше сопротивления цепи напряжения ваттметра R в . Сопротивления цепей напряжения и тока указаны на циферблате прибора. Ваттметр сконструирован так, что практически чаще пользуются схемой рис. 2а .

Общие сведения. Измерение мощности весьма распространено в практике электрических и электронных измерений на постоянном и переменном токе во всем освоенном диапазоне частот - вплоть до миллиметровых и более коротких волн.

Особое значение имеет измерение мощности в диапазоне СВЧ, поскольку мощность является единственной характеристикой элект­рического режима соответствующего тракта, когда измерение тока и напряжения на СВЧ из-за большой погрешности практически не­возможно.

Мощность измеряется ваттметрами в пределах от долей микроватт до единиц - десятков гигаватт.

В зависимости от измеряемых мощностей приборы делятся на ватт­метры малой (<10 мВт), средней (10 мВт... 10 Вт) и большой (>10 Вт) мощности.

Основной единицей измерения мощности является ватт (Вт). Ис­пользуются также кратные и дольные единицы:

Гигаватт (1 ГВт = Вт);

Мегаватт (1 МВт = Вт);

Киловатт (1 кВт = Вт);

Милливатт (1 мВт = Вт);

Микроватт (1 мкВт = Вт).

Международные обозначения единиц измерения мощности приве­дены в Приложении 1.

Мощность может измеряться не только в абсолютных, но и в отно­сительных единицах - децибелах:

Для измерения мощности используют косвенные и прямой методы. В каталоговой классификации электронные ваттметры обозначаются следующим образом: Ml - образцовые, М2 - проходящей мощности» МЗ - поглощаемой мощности, М4 - мосты для измерителей мощно­сти, М5 - преобразователи (головки) ваттметров.

Электромеханические ваттметры классифицируются в соответ­ствии с единицами измерения мощности, указанными на их шкалах и лицевых панелях: W - ваттметры: kW - киловаттметры; mW - милливаттметры; W - микроваттметры.

Измерение мощности в цепях постоянного и переменного тока низких частот. Для измерения мощности в цепях постоянного и пере­менного тока промышленных частот используются чаше всего элект­ромеханические ваттметры электродинамической и ферродинамической систем.

В лабораторной практике применяются в основном ваттметры электродинамической системы 3, 4 и 5-го классов точности (0,1; 0,2; 0,5). В промышленности при технических измерениях применяют ваттметры ферродинамической системы 6, 7 и 8-го классов точности (1,0; 1,5 и 2,5).

Шкалы однопредельных ваттметром градуированы в значениях измеряемой величины (ваттах, киловаттах и т.д.). Многопредельные ваттметры имеют неградуированную шкалу. Перед использованием таких ваттметров при известных номинальном значении тока и по­минальном значении напряжения выбранного предела, а также количестве делений шкалы применяемого ваттметра необходимо определить его цену деления с (постоянную прибора) при по формуле

Зная цену деления для данного ваттметра в выбранном пределе, несложно произвести отсчет значения измеряемой мощности. Измеренное значение мощности будет составлять

где п - отсчет количества делений по шкале прибора.

Ваттметры электродинамической системы применяются для из­мерения мощности в цепях постоянного и переменного тока частотой до нескольких килогерц.

Ваттметры ферродинамической системы применяются для изме­рения мощности в цепях постоянного и переменного тока промышлен­ных частот.

На постоянном и переменном токе низких, средних и высоких ча­стот используются косвенные методы измерения мощности, т.е. напря­жения, сила тока и фазовые сдвиги определяются путем последующего вычисления мощности. Активная мощность двухфазного переменного тока в цепи с комплексной нагрузкой определяется но формуле

где U, I- среднеквадратичное значение напряжения и силы тока;

Фазовый сдвиг между силой тока и напряжением.

В цепи с чисто активной нагрузкой , когда = 0, = 1, мощ­ность переменного тока составляет

, (3.33)

мощность импульсного тока:

На практике обычно измеряется средняя мощность за период сле­довании импульсов:

(3-35)

где q - скважность: q = ;

Длительность импульсов;

Коэффициент формы импульсов 1;

Период следования импульсов.

Высокочастотные методы измерения мощности . Возможны два типовых метода измерения мощности (в зависимости от ее вида: по­глощаемая или проходящая).

Поглощаемая мощность - это мощность, потребляемая нагруз­кой. В этом случае нагрузка заменяется ее эквивалентом, а измеряе­мая мощность полностью рассеивается на этом эквиваленте нагрузки, и далее измеряется мощность теплового процесса. Нагрузка ваттметра полностью поглощает мощность, поэтому такие приборы называются ваттметрами поглощаемой мощности (рис. 3.16, а). Так как нагрузка полностью должна поглощать измеряемую мощность, то прибор может использоваться только при отключенном потребителе. Погрешность измерения будет тем меньше, чем более полно обеспечено согласование входного сопротивления ваттметра с выходным сопротивлением исследуемого источника или волновым сопротивлением линии передачи.


Рис. 3.16. Методы измерения ваттметрами поглощаемой (о) и проходящей мощности (б)

Проходящая мощность - это мощность, передаваемая генератором в реальную нагрузку. Приборы, ее измеряющие, называются ваттметрами проходящей мощности. Такие ваттметры потребляют незначительную долю мощности источника, а основная ее часть выделяется в реальной полезной нагрузке (рис. 3.16, б).

К ваттметрам проходящей мощности относятся приборы па преоб­разователях Холла, с поглощающей стенкой и другие приборы.

В диапазоне высоких и сверхвысоких частот косвенные методы из­мерения мощности не применяются, так как в разных сечениях линии передач значения силы тока и падения напряжения различны; кроме того, подключение измерительного прибора меняет режим работы измерительной цепи. Поэтому на СВЧ используются другие методы: 1 например, преобразования электромагнитной энергии в тепловую (ка­лориметрический метод), изменения сопротивления резистора (термисторный метод).

Калориметрический метод измерения мощности характеризуется высокой точностью. Этот метод используется во всем радиотехни­ческом диапазоне частот при измерении сравнительно больших мощ­ностей, когда имеет место потеря тепла. Калориметрический метод основан на преобразовании электрической энергии в тепловую, когда нагревается некоторая жидкость в калориметре ваттметра (рис. 3.17). Далее мощность оценивается путем определения по известной разности температур и известному объему жидкости, протекающей через калориметр:

, (3.36)

где - коэффициент используемой жидкости;

- объем нагретой жидкости.


Рис. 3.17. Устройство калориметрического ваттметра

Погрешность калориметрического метода составляет 1...7%.

Термисторный (болометрический) метод измерения мощности основан на использовании свойства терморезисторов изменять свое сопротивление под воздействием поглощаемой ими мощности элек­тромагнитных колебаний. В качестве терморезисторов используют термисторы и болометры.

Термистор представляет собой полупроводниковую пластину (или диск), заключенную в стеклянный баллон. Термисторы имеют отрица­тельный температурный коэффициент, т.е. с повышением температу­ры их сопротивление падает.

Болометр представляет собой тонкую пластину из слюды или стекла с нанесенным на нее слоем (пленкой) платины. Пленоч­ные болометры обладают очень высокой чувствительностью (до ... Вт). Болометры имеют положительный температурный коэффициент, т.е. с повышением температуры их сопротивление растет.

Чувствительность и надежность термисторов выше, чем боломет­ров, однако параметры болометров стабильнее, поэтому они применя­ются в образцовых ваттметрах (подгруппа M1).

Термисторный метод обеспечивает высокую чувствительность, поэтому его применяют для измерения малых и средних мощностей. Использование ответвителей и делительных устройств позволяет применять метод и для измерения больших мощностей. Погрешность термисторных ваттметров составляет 4... 10% и чаще всего зависит от степени согласованности нагрузки.

К основным метрологическим характеристикам ваттметров, кото­рые необходимо знать при выборе прибора, относятся следующие:

Тип прибора (поглощаемой или проходящей мощности);

Диапазон измерения мощности;

Частотный диапазон;

Допустимая погрешность измерений;

Коэффициент стоячей волны (КСВ) входа измерителя мощности или модуль коэффициента отражения.

Контрольные вопросы

1. Приведите правило включения амперметра в исследуемую цепь.

2. Каково назначение шунтов?

3. Как изменяется сопротивление амперметра с подключением шунта?

4. Как шунт подключается к амперметру?

5. Амперметры какой системы чаще используются при измерении силы постоянного тока?

6. Амперметры какой системы используются при измерении силы I переменного тока высоких частот?

7. Какие правила необходимо соблюдать при измерении силы тока высоких частот?

8. Приведите эквивалентную схему амперметра для измерения силы тока низких частот.

9. Приведите эквивалентную схему амперметра для измерения силы тока высоких частот.

10. Перечислите основные параметры амперметра.

11. Какое требование предъявляется к внутреннему сопротивлению амперметра?

12. Почему нельзя использовать электромеханический амперметр электродинамической системы при измерении силы переменного тока высоких частот?

13. Перечислите достоинства амперметров магнитоэлектрической системы.

14. Перечислите недостатки амперметров магнитоэлектрической системы.

15. Сколько шунтов содержит электромеханический амперметр с пятью пределами измерения?

16. В чем состоит принципиальное отличие вольтметра от амперметра?

17. Как вольтметр включается в цепь?

18. Каково назначение добавочных резисторов?

19. Что необходимо сделать для расширения диапазона измерения на­пряжения электромеханического вольтметра?

20. Перечислите достоинства и недостатки электромеханических вольтметров.

21. По каким признакам классифицируются электронные аналоговые вольтметры?

22. По каким структурным схемам строятся электронные аналоговые вольтметры?

23. Перечислите достоинства и недостатки электронных аналоговых вольтметров.

24. Почему вольтметры типа У - Д имеют высокую чувствитель­ность?

25. Почему вольтметры типа Д - У имеют широкий частотный диапа­зон?

26. Каковы преимущества электронных цифровых вольтметров по сравнению с электронными аналоговыми?

27. Зачем электронные аналоговые вольтметры имеют шкалу, градуированную в децибелах?

28. По каким основным метрологическим характеристикам выбирают вольтметр?

29. В каких единицах измеряется напряжение?

30. Что представляют собой мультиметры?

31. Какими приборами можно измерить мощность в цепях постоян­ного тока?

32. Какими приборами можно измерить мощность в цепях переменно­го синусоидального тока промышленных частот?

33. Каким методом можно измерить малую мощность в СВЧ - диапазоне?

34. Каким методом можно измерить большую мощность в СВЧ - диапазоне?

35. Что необходимо знать при определении мощности импульсного сигнала?

36. Определите мощность, выделенную на резисторе R = 1 кОм при протекании постоянного тока силой 5 мА.

37. Определите рассеиваемую резистором R - 2 кОм мощность, если через него протекает синусоидальный ток амплитудой 4 мА.

38. В чем состоит калориметрический метод измерения мощности?

39. В чем состоит термисторный метод измерения мощности?

40. Что такое болометр и где он используется?

41.Укажите достоинства термистора по сравнению с болометром.

42. Укажите недостатки термистора по сравнению с болометром.

43. Перечислить достоинства и недостатки электродинамических ваттметров.

44. К какой группе и подгруппе относятся ваттметры поглощаемой мощности?

45. Какую часть энергии потребляют ваттметры проходящей мощности?

Измерение мощности. В цепях постоянного тока мощность измеряют электро- или ферродинамическим ваттметром. Мощность может быть также подсчитана перемножением значений тока и напряжения, измеренных амперметром и вольтметром.

В цепях однофазного тока измерение мощности может быть осуществлено электродинамическим, ферродинамическим или индукционным ваттметром. Ваттметр 4 (рис. 336) имеет две катушки: токовую 2, которая включается в цепь последовательно, и напряжения 3, которая включается в цепь параллельно.

Ваттметр является прибором, требующим при включении соблюдения правильной полярности, поэтому его генераторные зажимы (зажимы, к которым присоединяют проводники, идущие со стороны источника 1) обозначают звездочками.

Для расширения пределов измерения ваттметров их токовые катушки включают в цепь при помощи шунтов или измерительных трансформаторов тока, а катушки напряжения - через добавочные резисторы или измерительные трансформаторы напряжения.

Измерение электрической энергии. Способ измерения . Для учета электрической энергии, получаемой потребителями или отдаваемой источниками тока, применяют счетчики электрической энергии. Счетчик электрической энергии по принципу своего действия аналогичен ваттметру. Однако в отличие от ваттметров вместо спиральной пружины, создающей противодействующий момент, в счетчиках предусматривают устройство, подобное электромагнитному демпферу, создающее тормозящее усилие, пропорциональное частоте вращения подвижной системы. Поэтому при включении прибора в электрическую цепь возникающий вращающий момент будет вызывать не отклонение подвижной системы на некоторый угол, а вращение ее с определенной частотой.

Число оборотов подвижной части прибора будет пропорционально произведению мощности электрического тока на время, в течение которого он действует, т. е. количеству электрической энергии, проходящей через прибор. Число оборотов счетчика фиксируется счетным механизмом. Передаточное число этого механизма выбирают так, чтобы по показаниям счетчика можно было отсчитывать не обороты, а непосредственно электрическую энергию в киловатт-часах.

Наибольшее распространение получили ферродинамические и индукционные счетчики; первые применяют в цепях постоянного тока, вторые - в цепях переменного тока. Счетчики электрической энергии включают в электрические цепи постоянного и переменного тока так же, как и ваттметры.

Ферродинамический счетчик (рис. 337) устанавливают на э. п. с. постоянного тока. Он имеет две катушки: неподвижную 4 и подвижную 6. Неподвижная токовая катушка 4 разделена на две части, которые охватывают ферромагнитный сердечник 5 (обычно из пермаллоя). Последний позволяет создать в приборе сильное магнитное поле и значительный вращающий момент, обеспечивающий нормальную работу счетчика в условиях тряски и вибраций. Применение пермаллоя способствует уменьшению погрешности счетного механизма 2 от гистерезиса магнитной системы (он имеет весьма узкую петлю гистерезиса).

Чтобы уменьшить влияние внешних магнитных полей на показания счетчика, магнитные потоки отдельных частей токовой катушки имеют взаимно противоположное направление (астатическая система). При этом внешнее поле, ослабляя поток одной части, соответственно усиливает поток другой части и оказывает в целом небольшое влияние на результирующий вращающий момент, создаваемый прибором. Подвижная катушка 6 счетчика (катушка напряжения) расположена на якоре, выполненном в виде диска из изоляционного материала или в виде алюминиевой чаши. Катушка состоит из отдельных секций, соединенных с пластинами коллектора 7 (эти соединения на рис. 337 не показаны), по которому скользят щетки из тонких серебряных пластин.

Ферродинамический счетчик работает принципиально как двигатель постоянного тока, обмотка якоря которого подключена параллельно, а обмотка возбуждения - последовательно с потребителем электроэнергии. Якорь вращается в воздушном зазоре между полюсами сердечника. Тормозной момент создается в результате взаимодействия потока постоянного магнита 1 с вихревыми токами, возникающими в алюминиевом диске 3 при его вращении.

Для компенсации влияния момента трения и уменьшения благодаря этому погрешности прибора в ферродинамических счетчиках устанавливают компенсационную катушку или в магнитном поле неподвижной (токовой) катушки помещают лепесток из пермаллоя, который имеет высокую магнитную проницаемость при малой напряженности поля. При небольших нагрузках этот лепесток усиливает магнитный поток токовой катушки, что приводит к увеличению вращающего момента и компенсации трения. При увеличении нагрузки индукция магнитного поля катушки увеличивается, лепесток насыщается и его компенсирующее действие перестает возрастать.

При работе счетчика на э. п. с. возможны сильные толчки и удары, при которых щетки могут отскакивать от коллекторных пластин. При этом под щетками будет возникать искрение. Для его предотвращения между щетками включают конденсатор С и резистор R1. Компенсация температурной погрешности осуществляется с помощью термистора Rт (полупроводникового прибора, сопротивление которого зависит от температуры). Он включается совместно с добавочным резистором R2 параллельно подвижной катушке. Чтобы уменьшить влияние тряски и вибраций на работу счетчиков, их устанавливают на э. п. с. на резинометаллических амортизаторах.

Индукционный счетчик имеет два электромагнита (рис. 338,а), между которыми расположен алюминиевый диск 7. Вращающий момент в приборе создается в результате взаимодействия переменных магнитных потоков Ф1 и Ф2, созданных катушками электромагнитов, с вихревыми токами I в1 и I в2 , индуцируемыми ими в алюминиевом диске (так же, как и в обычном индукционном измерительном механизме, см. § 99).

В индукционном счетчике вращающий момент М должен быть пропорционален мощности P=UIcos?. Для этого катушку 6 одного из электромагнитов (токовую) включают последовательно с нагрузкой 5, а катушку 2 другого (катушку напряжения) - параллельно нагрузке. В этом случае магнитный поток Ф1 будет пропорционален току I в цепи нагрузки, а поток Ф2 - напряжению U, приложенному к нагрузке. Для обеспечения требуемого угла сдвига фаз? между потоками Ф1 и Ф2 (чтобы sin? = cos?) в электромагните катушки напряжения предусмотрен магнитный шунт 3, через который часть потока Ф2 замыкается

помимо диска 7. Угол сдвига фаз между потоками Ф1 и Ф2 точно регулируется изменением положения металлического экрана 1, расположенного на пути потока, ответвляющегося через магнитный шунт 3.

Тормозной момент создается так же, как в ферродинамическом счетчике. Компенсация момента трения осуществляется путем создания небольшой несимметрии в магнитной цепи одного из электромагнитов с помощью стального винта.

Для предотвращения вращения якоря при отсутствии нагрузки под действием усилия, созданного устройством, компенсирующим трение, на оси счетчика укрепляется стальной тормозной крючок. Этот крючок притягивается к тормозному магниту 4, благодаря чему предотвращается возможность вращения подвижной системы без нагрузки.

При работе же счетчика под нагрузкой тормозной крючок практически не влияет на его показания.

Чтобы диск счетчика вращался в требуемом направлении, необходимо соблюдать определенный порядок подключения проводов к его зажимам. Нагрузочные зажимы прибора, к которым подключают провода, идущие от потребителя, обозначают буквами Я (рис. 338,б), генераторные зажимы, к которым подключают провода от источника тока или от сети переменного тока,- буквами Г.

Метод амперметра и вольтметра

Из формулы Р = I* U видно, что в цепи постоянного тока мощность можно

измерить косвенным методом по показаниям амперметра и вольтметра. При этом возможны две схемы включения приборов:

Действительное значение мощности, потребляемой нагрузкой, равно Pа = Ui*Ii.

В первой схеме амперметр показывает значение тока нагрузки, а вольтметр -

сумму падений напряжений на амперметре и на нагрузке. Мощность, определенная по показаниям приборов, равна:

P=(Ui+Ua)*Ii=Ui*Ii+Ua*Ii=P A +P a

Найдем значение методической погрешности для первой схемы:

Во второй схеме показания вольтметра соответствуют напряжению на нагрузке Uн, а амперметр показывает сумму токов, протекающих по нагрузке и по вольтметру. Измеренное значение мощности равно:

P=Ui(Ii+IA)=Ui*Ii+Ui*Ia

Найдем значение методической погрешности для второй схемы:

Измерение в цепях мощности постоянного тока ваттметрами.

В настоящее время для измерения мощности постоянного и переменного тока

используют электродинамические и ферродинамические ваттметры.

Для измерения мощности переменного тока широко применяются

ферродинамические ваттметры.

Ферродинамическим ваттметрам свойственны все достоинства и недостатки, характерные для ферродинамических ИМ по сравнению с электродинамическими. Точность их ниже по сравнению с электродинамическими, но более высокая чувствительность и механическая прочность обеспечивают широкое применение ферродинамических ваттметров.

Более просто мощность в цепях постоянного тока измеряется с помощью электродинамического ваттметра (один стрелочный механизм имеет две обмотки). Показания ваттметра («+» или «-») завися от направления тока в обмотке. «Начало» обмоток обозначается * или + . Выводы обозначенные * называются генераторными выводами или генераторными зажимами, т.к. они чаще всего оказываются включенными в провода идущие от источника тока (к генератору), а не к нагрузке.


Ваттметр имеет две цепи: одна из них включена последовательно, а другая параллельно нагрузке. Через первую протекает ток нагрузки, а через вторую напряжение источника. Первая обмотка называется последовательной цепью ваттметра, а другая - параллельной. Иногда их еще называют «цепь тока» и «цепь напряжения». Генераторный зажим токовой обмотки всегда включается в сторону источника питания.

Для уменьшения методической погрешности генераторный зажим может подключаться следующим образом.


Так же как и в методе амперметра-вольтметра, погрешность возникает из-за шунтирующего действия нагрузки сопротивлением обмотки напряжения и падения напряжения на токовой обмотке.

Сравнивая схемы нетрудно заметить, что первую схему целесообразно применять при сравнительно большом сопротивлении нагрузки, а вторую при относительно малом сопротивлении нагрузки. Значение сопротивления токовой цепи указывается на циферблате прибора.

Измерение в цепях мощности переменного тока ваттметрами.

Схемы, приведенные выше, могут применяться для измерения мощности на переменном токе. Показания ваттметра определяются соотношением P=U*I*cosφ.

φ определяется характером нагрузки. Обычно ваттметры ЭМ типа используются для измерения мощности в цепях переменного тока частотой 50 Гц. С увеличением частоты появляется индуктивный характер катушек и точность показаний уменьшается. Однако рабочая область частот ваттметра ЭДС может достигать нескольких кГц. Ваттметр Д568 применяется в диапазоне частот до 5 кГц. Ферродинамические ваттметры, содержащие магнитные сердечники, обладают более высокой чувствительностью, однако частотные свойства хуже из-за потерь в сердечнике.

Измерение мощности. В цепи постоянного тока мощность может быть измерена с помощью амперметра и вольтметра, так как Р = UI . Однако более точно ее можно измерить непосредственно электродина­мическим ваттметром (рис. 10.3). Он состоит из катушки с малым со­противлением, включенной, как и амперметр, последовательно и назы­ваемой токовой обмоткой, и подвижной катушки с большим сопро­тивлением, включаемой параллельно и называемой обмоткой напряжения.

Вращающий момент ваттметра про­порционален произведению токов в ка­тушках:

где I - ток в неподвижной катушке, практически равный току нагрузки; I U = U / r U - ток в подвижной катушке, т е. в обмотке напряжения; r U - сопротивление цепи подвижной катуш­ки. Следовательно,


(10.5)

где С - коэффициент пропорциональности.

Таким образом, вращающий момент ваттметра пропорционален мощности и его шкала может быть отградуирована непосредственно в ваттах или киловаттах.

Для измерения активной мощности в цепях переменного тока при­меняют ваттметры электродинамической системы.

Измерение активной мощности в однофазной цепи . Электродинами­ческий ваттметр для измерения активной мощности в однофазной цепи переменного тока включают так же, как и при измерениях в цепи постоянного тока, т. е. по схеме рис. 10.3. Так как ток I U в подвижной катушке пропорционален напряжению U и практически совпадает с ним по фазе, а ток I в неподвижной катушке (токовой обмотке) равен току нагрузки, то вращающий момент ваттметра

где С - коэффициент пропорциональности.

Итак, вращающий момент ваттметра пропорционален измеряемой активной мощности Р, а противодействующий момент М пр , пропорцио­нален углу поворота α подвижной катушки (или стрелки прибора). Поэтому отклонение стрелки прибора пропорционально измеряемой мощности Р и, следовательно, шкалу ваттметра градуируют в ваттах или киловаттах.

Зажимы токовой обмотки и обмотки напряжения ваттметра, помечен­ные звездочками и называемые генераторными, следует включать в электрическую цепь со стороны источника питания.

Измерение активной мощности в трехфазной цепи . В зависимости от характера нагрузки и схемы трехфазной цепи применяется несколько способов измерения мощности.

При симметричной нагрузке активную мощность в трехфазной цепи можно измерить путем замера мощности в одной фазе с помощью ваттметра, включенного по схеме рис. 10.4, а, б. После измерения показания


ваттметра P w умножают на 3: *«

(10.7)

В трехпроводной трехфазной цепи как при симметричной, так и несимметричной нагрузке и любом способе соединения потребителей активную мощность можно измерить с помощью двух ваттметров (рис. 10.5). Покажем, что алгебраическая сумма показаний ваттметров в этом случае равна активной мощности Р в трехпроводной трех­фазной цепи.

Мгновенное значение мощности, измеряемое первым ваттметром, p 1 = u AB i A . Мгновенная мощность, измеряемая вторым ваттметром, p 2 = u CB i C . Сумма мгновенных значений мощностей, измеряемых двумя ваттметрами, р = p 1 + p 2 = u AB i A + u CB i C . .

Если линейные напряжения и АВ и u CB , на которые подключены обмотки напряжения ваттметров, выразить через фазные напряжения u AB = u A - u B ; u cb = и с - и в ,; то р = и А i A - u B i A + u c i c - u B i c или р = u A i A + u c i c - и в (i A + i c). Так как в трехпроводной трехфазной цепи i A + i B + i C = 0, то i A + i C = - i B , , а окончательное выражение мощ­ности, измеряемой двумя ваттметрами,


Из этого выражения следует, что суммарная мгновенная мощность, измеряемая двумя ваттметрами, равна активной мощности в трехфаз­ной цепи при соединении потребителей звездой. Подобные же рассуж­дения можно повторить и для соединения потребителей треуголь­ником, получив при этом одинаковый конечный результат.

Активная мощность трехфазной системы, выраженная через дейст­вующие значения напряжений и токов и замеренная по способу двух ваттметров, равна

где Р w 1 и Р w 2 - показания ваттметров.

При измерении активной мощности по способу двух ваттметров для случая симметричной нагрузки I А = I В = I С = I л ; U AC = U CB = U л .

На рис, 10.6 представлена векторная диаграмма токов и напря­жений, которая поясняет измерения активной мощности с помощью




двух ваттметров для симметричной нагрузки, соединенной звездой. Так как на векторной диаграмме угол α между векторами U AB и I А равен φ + 30°, а угол β между векторами U CB и I C составляет φ - 30°, то мощность трехфазной системы при симметричной нагрузке

Если угол сдвига фаз φ < 60°, то, согласно (10.9), мощность, учитываемая ваттметрами, всегда положительна: Р w1 = U Л I Л cos (φ + 30°) и P w 2 = U Л I Л cos (φ - 30°). При φ = 60° мощность, показываемая первым ваттметром, равна нулю: cos(60° + 30°) = 0. В этом случае вся мощность в трехфазной цепи будет учитываться вторым ваттметром. При φ > 60° мощность, учитываемая первым ваттметром, становится отрица­тельной и суммарная мощность двух ваттметров вычисляется с учетом знака мощностей последних, как их алгебраическая сумма.

Практически для отсчета отрицательной мощности по показаниям ваттметра необходимо изменять направление тока в обмотке напряжения, для чего переключатель направления тока в обмотке напряжения, имеющийся на корпусе ваттметра, надо переключить с «+» на «-».

Измерить активную мощность в четырехпроводной трехфазной цепи при несимметричной нагрузке можно тремя ваттметрами (рис. 10.7). Так как в этом случае каждый из ваттметров измеряет активную мощность одной фазы, то мощность в четырехпроводной трех­фазной цепи

где Р А , Р B , P C - активные мощности фаз А, В, С.

Измерение реактивной мощности в трехфазной цепи . Реактивную мощность в трехфазной трехпроводной цепи при симметричной нагрузке можно определить по разности показаний ваттметров (см. рис. 10.5):

откуда реактивная мощность


Реактивную мощность в трехпроводной трехфазной цепи при сим- метричной нагрузке можно измерить одним ваттметром (рис. 10.8, а) , причем токовая обмотка ваттметра включается в линейный провод А, а обмотка напряжения - на линейное напряжение U BC (т. е. на «чужое» напряжение). Из векторной диаграммы (рис. 10.8,6) видно, что сдвиг фаз между током I A и напряжением U BC составляет α = 90° - φ. Тогда показания ваттметра 4

Для вычисления реактивной мощности трехфазной трехпроводной цепи при симметричной нагрузке необходимо показания ваттметра умножить на

:

Измерение энергии в цепях переменного тока . В цепях переменного тока для измерения активной энергии служат однофазные и трех­фазные счетчики индукционной системы. Для измерения активной энергии в однофазных и трехфазных цепях однофазные счетчики вклю­чают по схемам, аналогичным схемам включения ваттметров (см. рис. 10.3 и 10.5). В трехпроводных трехфазных цепях для измерения активной энергии применяют двухэлементные объединяющие измери­тельные системы двух однофазных счетчиков (рис. 10.9).

Для измерения активной энергии в четырехпроводных цепях трех­фазного тока применяют трехэлементные счетчики.

Реактивную энергию W P как при симметричной, так и при не­симметричной нагрузке в трехфазной цепи измеряют трехфазными индук­ционными счетчиками реактивной энергии. При симметричной нагрузке в трехпроводной трехфазной цепи реактивную мощность можно изме­рить с помощью двух однофазных счетчиков. Для этого их включают в цепь, как и ваттметры, по схеме рис. 10.5. Реактивная энергия равна разности показаний счетчиков, умноженной на

.