Смотреть устройство и принцип работы гидравлического оборудования. Гидравлическая система. Техническое обслуживание клапанов

2015-11-15

Гидравлический привод (объемный гидропривод) это совокупность объемных гидромашин, гидроаппаратуры и других устройств, предназначенная для передачи механической энергии и преобразования движения посредством жидкости. (Т.М Башта Гидравлика, гидромашины и гидроприводы).

В гидропривод входят один или несколько гидродвигателей, источники энергии жидкости, аппаратура управления соединительные линии.

Работа гидравлического привода основана на принципе

Рассмотрим систему.

В данной системе усилие создаваемое на поршне 2 можно определить по зависимости:

Получается, что усилие зависит от отношения площадей , чем больше будет площадь второго поршня, и чем меньше площадь первого, тем значительнее будет разница между силами F1 и F2. Благодаря принципу гидравлического рычага можно получить большое усилие, приложив малое.

Выигрывая в усилии на гидравлическом рычаге, придется пожертвовать перемещением , переместив малый поршень на величину l1, получим перемещение поршня 2 на величину l2:

Учитывая, что площадь поршня S2 больше площади S1, получим что перемещение l2 меньше чем l1.

Гидравлический привод не был бы так полезен, если бы потерю в перемещении не удалось скомпенсировать, а сделать это удалось благодаря особым гидравлическим устройствам - .

Обратный клапан - это устройство для запирания потока движущегося в одном направлении, и свободного пропускания обратного потока.

Если в рассмотренном примере, на выход камеры с поршнем 1 установить обратный клапан , так чтобы жидкость могла выйти из камеры, а обратно перетечь не могла. Второй клапан нужно установить на между камерой с поршнем 1 и дополнительным баком с жидкостью, таким образом чтобы, жидкость могла попасть в камеру с , а из этой камеры обратно в бак перетечь не могла.

Новая система будет выглядеть следующим образом.


Приложив к поршню усилие F1 и переместив его на расстояние l1, получим перемещение поршня с усилием F2 на расстояние l2. Затем отведем поршень 1 в начальное расстояния, из камеры с поршнем 2 жидкость перетечь обратно не сможет - не позволит обратный клапан - поршень 2 останется на месте. В камеру с поршнем один поступит жидкость из бака. Затем, нужно вновь приложить усилие F1 к поршню 1 и переместить его на расстояние l1, в результате поршень 2 вновь переместится на расстояние l2 с усилием F2. А по отношению к начальному положению, за два цикла поршень 2 переместится на расстояние 2*l2. Увеличивая число циклов, можно получить большую величину перемещения поршня 2.

Именно возможность увеличивать перемещение наращивая число циклов, позволила гидравлическому рычагу опередить механический с точки зрения возможного развиваемого усилия.

Приводы, где требуется развивать огромные усилия, как правило, гидравлические.

Узел с камерой и поршнем 1, а также с обратными клапанами в гидравлике называют насосом . Поршень 2 с камерой - гидравлическим двигателем , в данном случае - .

Распределитель в гидроприводе

Что делать, если в рассматриваемой системе нужно, вернуть поршень 2 в начальное положение? В текущей комплектации системы - это невозможно. Жидкость из под поршня 2 не может перетечь обратно - не позволит обратный клапан, значит необходимо устройство, позволяющее отправить жидкость в бак. Можно воспользоваться простым краном.


Но в гидравлике есть специальное устройство для направления потоков - распределитель , позволяющий направлять потоки жидкости по нужной .


Ознакомимся с работой полученного гидропривода.

Устройства в гидравлических приводах

Современные гидроприводы представляют собой сложные системы, состоящие из множества элементов. Конструкция которых не отличается простотой. В представленном примере такие устройства отсутствуют, т.к. они предназначены, как правило, для достижения нужных характеристик привода.

Наиболее распространенные гидравлические аппараты

  • Предохранительные клапаны
  • Редукционные клапаны
  • Регуляторы расхода
  • Дроссели

Информацию о гидравлических аппаратах вы можете получить на нашем сайте в разделе - . Если у вас остались вопросы, задавайте их в комментариях к данной статье.

Преимущества гидравлических систем по сравнению с другими методами передачи мощности являются:

  • Простота конструкции . В большинстве случаев, несколько компонентов гидросистем в связке могут заменить более сложные механические связи.
  • Гибкость . Гидравлические компоненты могут быть расположены со значительной гибкостью. Трубы и шланги вместо механических элементов практически полностью устраняют проблемы в выборе местоположения.
  • Плавность . Гидравлические системы обладают плавностью и тишиной в работе. Вибрации сведены к минимуму.
  • Управление. Контроль в широком диапазоне скоростей и сил достаточно просто реализовать.
  • Стоимость . Высокая производительность с минимальными потерями на трение обеспечивает стоимость передачи мощности на минимальном уровне.
  • Защита от перегрузки . Автоматические клапаны предохраняют систему от поломки от перегрузки.

Основным недостатком гидравлической системы является сохранение прецизионных деталей в нормальном состоянии, когда они подвергаются воздействию плохих климатических условий и загрязнений. Защита от ржавчины, коррозии, грязи, масла, износа и других неблагоприятных условий окружающей среды является очень важным условием. Ниже рассмотрим несколько основных типов гидравлических систем.

Гидравлический домкрат

Эта система (рисунок 1) состоит из резервуара с жидкостью, системы клапанов и штоков, представляет собой гидрорычаг Паскаля. Перемещение маленького штока (насоса) вниз приводит к подёму вверх большого штока(подъёмный цилиндр) с нагрузкой. Так как давление под маленьким и большим штоками одинаковое, а площади штоков (на которые это давление воздействует) разные, то в соответствии с законом Паскаля, при небольшом усилии на шток насоса, достигается значительно большее усилие на подъемном цилиндре.

На рисунке 1 в верхней части показан такт впуска. Выпускной обратный клапан закрывается под давлением при нагрузке, и всасывающий обратный клапан открывается таким образом, что жидкость из резервуара заполняет насосную камеру. В нижней схеме рисунка 1 плунжер насоса перемещается вниз. Впускной обратный клапан закрывается под давлением и открывает выпускной клапан. Масса жидкости закачивается под большим поршнем, чтобы поднять его. Чтобы опустить нагрузку, в системе предусмотрен третий клапан (игольчатый клапан). При его открытии, объем жидкости под большим поршнем сообщяется с резервуаром. Нагрузка опускает большой подъемный шток вниз и выдавливает жидкость обратно в резервуар.

вверху - такт впуска и удержания нагрузки, внизу - такт выпуска и подъема нагрузки.

Рисунок 1 - Гидравлический домкрат

Реверсивный гидромотор

На рисунках 2 и 3 показан гидравлический насос с механическим приводом и гидравлический реверсивный роторный мотор. Клапан направления потока (реверсивный клапан) направляет поток жидкости или к одной или к другой стороне гидромотора и обратно в резервуар. Так достигается возможность работы гидравлического мотора с разным направлением вращения (реверсивность) Предохранительный клапан защищает систему от избыточного давления и может создать обход выхода потока жидкости из насоса обратно в резервуар, если давление поднимается слишком высоко.

Рисунок 2 - Реверсивный гидромотор

Рисунок 3 - Реверсивный гидромотор (продолжение)

Система с открытым центром

В этой системе, распределительный клапан управления, должен быть открыт в центре, чтобы поток масла, проходил через клапан и возвращался в резервуар. Рисунок 4 показывает эту систему в нейтральном положении. Для того, чтобы одновременно работать с несколькими гидравлическими функциями, система с открытым центром должна иметь правильные соединения, которые обсуждаются ниже. Система с открытым центром эффективна для выполнения отдельных гидравлический функций и имеет ограничения с выполнением множества функций.

Рисунок 4 - Гидравлическая система с открытым центром.

(1) Последовательное соединение. На рисунке 5 изображена система с открытым центром при последовательном соединении гидравлических потребителей/распределителей. Поток масла от насоса направляется к трём распределительным клапанам последовательно. Центр каждого распределителя в нейтральном положении открыт, что бы поток масла свободно перемещался от насоса к резервуару. Направление движение потока масла указано стрелками. Поток из выхода первого клапана направляется на вход второго, и так далее. Когда распределительный клапан работает, входящее масло поступает в цилиндр, который управляется соответственным клапаном-распределителем. Возвращаемая жидкость из цилиндра направляется через возвратный трубопровод и к следующему клапану.

Рисунок 5 - Гидравлическая система с открытым центром и последовательным соединением.

Эта система эффективна только если работает одновременно один клапан-распределитель. Когда это происходит, полный поток масла и давления на выходе из насоса доступны для этой функции. Однако, если более чем один клапан-распределитель работает, общее количество давления и потока, необходимое для каждой функции не может превышать параметр сброса системы (установки клапана сброса).

2) Последовательно-параллельное соединение. Рисунок 6 показывает изменение по сравнению с последовательным соединении. Масло из насоса направляется через распределительные клапаны последовательно, а также параллельно. Клапаны иногда "нагромождают", чтобы обеспечить дополнительные проход потока. В нейтральном положении, жидкость проходит через клапаны последовательно, как стрелки указывают. Тем не менее, когда какой - либо клапан-распределитель срабатывает, выпуск на работающем клапане закрывается, но поток масла становится доступен для всех других клапанов через параллельное соединение.

Рисунок 6 - Гидравлическая система с открытым центром и последовательно-параллельным соединением.

Когда два или более клапанов работают одновременно, цилиндр, который нуждается в наименьшем давлении будет работать первым, а затем цилиндр со следующим меньшим давлением и так далее. Эта способность работать с двумя или более клапанами одновременно является преимуществом по сравнению с последовательным соединением.

(3) Делитель потока. Рисунок 7 показывает систему с открытым центром и делителем потока. Делитель потока получает объем масла из насоса и делит его между двумя функциями. Например, делитель потока может быть установлен, чтобы открыть левую сторону первой в этом случае, если оба управляющих клапана были одновременно приведены в действие. Или он может разделить поток масла на обе стороны, в равной степени или в разном процентном отношении. Для такой системы с делителем потока, насос должен быть достаточно производительным, чтобы управлять всеми функциями одновременно. Он также должен питать жидкостью при максимальном давлении самую главную из гидравлических функций. А это означает, что большое количество лошадиных растрачиваются при работе только одного управляющего клапана.

Рисунок 7 - Гидравлическая система с открытым центром и делителем потока.

Система с закрытым центром

В этой системе, насос может бездействовать (находиться в режиме ожидания), когда масло не требуется для работы функции. Это означает, что управляющий клапан (распределитель) закрыт в центре, останавливая поток масла из насоса. Рисунок 8 показывает схематично гидравлическую систему с закрытым центром во время работы гидравлической функции. Для того, чтобы работали одновременно несколько функций, гидравлическая система с закрытым центром имеет следующие соединения:

Рисунок 8 - Гидравлическая система с закрытым центром.

(1) Насос с постоянной подачей и аккумулятором. На рисунке 9 показана гидравлическая система с закрытым центром и аккумулятором. В этой системе имеется небольшой насос, но в постоянном объеме заряжает аккумулятор. Когда аккумулятор заряжается до полного давления, разгрузочный клапан отклоняет поток насоса обратно в резервуар. Обратный клапан удерживает масло под давлением в контуре.

Рисунок 9 - Гидравлическая система с закрытым центром и аккумулятором.

Когда управляющий клапан работает, аккумулятор разряжает свою масло под давлением и приводит в движение цилиндр. Поскольку давление начинает падать, разгрузочный клапан открывается и направляет поток насоса в аккумулятор для подзарядки потока. Эта система, используя небольшого объёма насос, эффективна в случаях когда масло требуется только в течение короткого промежутка времени. Тем не менее, когда для работы гидравлической функции нужно много масла в течение более длительных периодов, система с аккумулятором может не справиться с этим, если аккумулятор не очень велик.

(2) Насос с изменяемым расходом . Рисунок 10 показывает гидравлическую систему с закрытым центром и насосом переменного расхода при нейтральном положении управляющего клапана. Когда управляющий клапан в нейтральном положении (центр закрыт), масло закачивается, пока давление не поднимается до заданного уровня. Клапан регулирования давления позволяет насосу отключить самого себя и поддерживать это давление в клапане. Насос находится в режиме ожидания(stand by) Расход масла насосом близок к нулю (восполняются собственные утечки в насосе), давление равно установкам клапана давления ожидания насоса.

Когда распределительный клапан срабатывает (перемещается вверх), масло отводится от насоса к нижней части полости цилиндра. Падение давления, вызванное сообщением линии давления насоса и нижней полости цилиндра, приводит насос из режима ожидания в рабочий режим, чтобы создать поток масла и давление на дно поршня, для подъема груза.

Рисунок 10 - Гидравлическая система с закрытым центром и насосом переменного расхода.

В это время, верхняя полость цилиндра соединяется с возвратной линией, что позволяет маслу выталкиваться из поршня, чтобы возвращаться в резервуар или в насос. Когда управляющий клапан возвращается в нейтральное положение, то масло становится запертым по обе стороны цилиндра, а поступление давления от насоса к гидроцилиндру наглухо перекрыто. После этой последовательности, насос снова переходит в режим ожидания. Перемещение золотника в нижнее положение направляет масло к верхней части полости поршня и приводит к перемещению груза вниз. Масло из нижней части поршня направляется в обратную линию в резервуар.

Рисунок 11 показывает ту же систему с закрытым центром, но с подкачивающим насосом (насос зарядки), который перекачивает масло из резервуара в насос переменного расхода. Во время работы насоса подпитки создаётся необходимое давление для основного насоса и необходимое количество масла для него. Всё это делает работу насоса переменного расхода более эффективным. Возврат масла из работающих гидравлических функций всей гидросистемы, направляется непосредственно к входному отверстию насоса с переменным расходом.

Рисунок 11 - Гидравлическая система с закрытым центром и подкачивающим насосом.

Поскольку современным машинам нужно больше гидравлической мощности, гидравлическая система с закрытым центром является более выгодной. Например, на тракторе, масло может потребоваться для усилителя руля, усилителя тормозов, рабочих цилиндров, трех-точечной навески, погрузчика и другого навесного оборудования. В большинстве случаев, каждая функция требует различное количество масла. В системах с закрытым центром, количество масла для каждой функции можно задавать с помощью линии или размера клапана или путем дросселирования с меньшим количеством внутренней генерации тепла по сравнению с применением делителей потоков в сопоставимой системе с открытым центром. Другими преимуществами системы с закрытым центром является:

  • Не требует разгрузочных клапанов, так как насос просто выключается сам по себе при достижении давления в режиме ожидания. Это предотвращает накопление тепла в, по сравнению в системах где часто достигается давления сброса.
  • Имеет линии, клапаны и цилиндры, которые могут быть адаптированы к требованиям потока каждой функции.
  • Запас потока масла для полной работы и скорости гидравлической системы, доступен при низких оборотах двигателя в минуту (об/мин). Больше функций могут быть задействованы одновременно.
  • Большая эффективность работы в некоторых случаях. Например, гидравлические функции, такие как тормоза, которые требуют силы, но очень малого движения поршня. Удерживая клапан открытым, в режиме ожидания давление постоянно воздействует на тормозной поршень без потери эффективности, так как насос возвращается в режим ожидания.

Современные механизмы, машины и станки, не смотря на кажущееся сложное устройство, представляют собой совокупность так называемых простых машин – рычагов, винтов, воротов и тому подобного. Принцип работы даже очень сложных приборов основывается на основополагающих законах природы, которые изучает наука физика. Рассмотрим в качестве примера устройство и принцип работы гидравлического пресса.

Что такое гидравлический пресс

Гидравлический пресс – машина, создающая усилие, значительно превосходящее изначально приложенное. Название «пресс» довольно условно: такие устройства часто действительно используют для сжатия или прессования. Например, для получения растительного масла семена масличных культур сильно спрессовывают, выдавливая масло. В промышленности гидравлические прессы применяются для изготовления изделий методом штамповки.

Но принцип устройства гидравлического пресса можно использовать и в других сферах. Самый простой пример: гидравлический домкрат – механизм, позволяющий приложением относительно небольшого усилия человеческих рук поднимать грузы, масса которых заведомо превышает возможности человека. На этом же принципе – использовании гидравлической энергии, построено действие самых разных механизмов:

  • гидравлического тормоза;
  • гидравлического амортизатора;
  • гидравлического привода;
  • гидравлического насоса.

Популярность механизмов такого рода в самых разных областях техники связана с тем, что огромная энергия может передаваться с помощью довольно простого устройства, состоящего из тонких и гибких шлангов. Промышленные многотонные прессы, стрелы кранов и экскаваторов – все эти незаменимые в современном мире машины эффективно работают именно благодаря гидравлике. Помимо промышленных устройств гигантской мощности, есть множество ручных механизмов, например, домкратов, струбцин и небольших прессов.

Как работает гидравлический пресс

Чтобы понять, как работает этот механизм, нужно вспомнить, что такое сообщающиеся сосуды. Этим термином в физике называют сосуды, соединенные между собой и заполненные однородной жидкостью. Закон о сообщающихся сосудах говорит, что находящаяся в покое однородная жидкость в сообщающихся сосудах находится на одном уровне.

Если мы нарушаем состояние покоя жидкости в одном из сосудов, например, доливая жидкость, или оказывая давление на ее поверхность, чтобы привести систему в равновесное состояние, к которому стремится любая система, в остальных сообщающихся с данным, сосудах повысится уровень жидкости. Происходит это на основании другого физического закона, названного по имени ученого, сформулировавшего его – закона Паскаля. Закон Паскаля заключается в следующем: давление в жидкости или газе распространяется во все точки одинаково.

На чем же основан принцип работы любого гидравлического механизма? Почему человек может с легкостью поднять автомобиль, весящий больше тонны, чтобы поменять колесо?

Математически закон Паскаля имеет такой вид:

Давление P зависит прямо пропорционально от приложенной силы F. Это понятно – чем сильнее давить, тем больше давление. И обратно пропорционально от площади прилагаемой силы.

Любая гидравлическая машина представляет собой сообщающиеся сосуды с поршнями. Принципиальная схема и устройство гидравлического пресса показаны на фото.

Представьте, что мы надавили на поршень в большем сосуде. По закону Паскаля в жидкости сосуда начало распространятся давление, а по закону о сообщающихся сосудах, чтобы скомпенсировать это давление, в малом сосуде поршень поднялся. Причем, если в большом сосуде поршень сдвинулся на одно расстояние, то в малом сосуде это расстояние будет в несколько раз больше.

Проводя опыт, или математический расчет, несложно заметить закономерность: расстояние, на которые сдвигаются поршни в сосудах разного диаметра, зависят от соотношения меньшей площади поршня к большой. Тоже произойдет, если наоборот, силу прикладывать к меньшему поршню.

По закону Паскаля, если давление, полученное действием силы, приложенной к единице площади поршня малого цилиндра, во всех направлениях распространяется одинаково, то на большой поршень будет оказываться тоже давление, только увеличенное на столько, насколько площадь второго поршня больше площади меньшего.

В этом и заключается физика и устройство гидравлического пресса: выигрыш в силе зависит от соотношения площадей поршней. Кстати, в гидравлическом амортизаторе используется обратное соотношение: большое усилие гасится гидравликой амортизатора.

На видео представлена работа модели гидравлического пресса, которая наглядно иллюстрирует, каково действие этого механизма.

Устройство и работа гидравлического пресса подчиняется золотому правилу механики: выигрывая в силе, проигрываем в расстоянии.

От теории к практике

Блез Паскаль, теоретически продумав принцип работы гидравлического пресса, назвал его «машиной для увеличения сил». Но с момента теоретических изысканий до практического воплощения прошло более ста лет. Причиной такого запаздывания была не бесполезность изобретения – выгоды машины для увеличения силы очевидны. Конструкторами предпринимались многочисленные попытки соорудить это механизм. Проблема была в сложности создания уплотнительной прокладки, которая позволяла бы плотно прилегать поршню к стенкам сосуда и в тоже время, давать возможность ему легко скользить, сводя к минимуму издержки на трение – резины ведь тогда еще не было.

Проблема решилась только в 1795 году, когда английским изобретателем Джозефом Брамой был запатентован механизм, получивший название «пресс Брама». Позднее это устройство стали называть гидравлическим прессом. Схема действия прибора, теоретически изложенная Паскалем и воплощенная в прессе Брамы, нисколько не изменилась за прошедшие столетья.


К атегория:

Краны-трубоукладчики



-

Принцип работы гидравлической системы навесного оборудования


Общие сведения. Гидравлическая система навесного оборудования предназначена для выдвижения и подтягивания контргруза, а также для управления тормозами и муфтами. Она состоит из гидравлического насоса, гидравлических цилиндров, гидрораспределителей, предохранительных гидроклапанов, гидродросселей, гидробаков, контрольно-измерительных приборов (манометров), гидролиний, фильтра.

В рассматриваемых трубоукладчиках схемы гидравлической системы навесного оборудования, несмотря на использование унифицированных сборочных единиц и элементов, имеют некоторые различия, обусловленные различием принципа включения муфт управления барабанами лебедки и присутствием специальных приборов контроля нагрузки.

Трубоукладчик Т-3560М. Из бака (рис. 85) насос подает рабочую жидкость по линии а к распределителю. В нейтральном положении рукояток золотников рабочая жидкость через отверстия в корпусе распределителя поступает в бак по линии. Распределитель состоит из трех секций, две из которых направляют поток рабочей жидкости к цилиндрам управления муфтами подъема и опускания груза и управления стрелой, а третья секция обслуживает цилиндр управления контргрузом. В случае подъема или опускания рукоятки (и вместе с ней золотника) рабочая жидкость из распределителя через дроссели будет поступать в правую или левую полости цилиндра, соответственно выдвигая или подтягивая контргруз.

Рис. 85. Гидравлическая схема навесного оборудования трубоукладчика Т-3560Л1:
1 - шестеренный насос, 2 - предохранительный клапан, 3 - манометр, 4 - трехзолотниковый распределитель, 5 - цилиндр управления контргрузом, Ь, 12, 13 - рукоятки золотников, 7 и 8 - цилиндры управления муфтами подъема и опускания крюка и стрелы, 9 - прерыватель, 10 - бак, 11 - дроссели

При установке рукоятки в нейтральное положение (показано на рисунке) поршень цилиндра окажется зафиксированным в том положении, в котором он находился в момент перевода рукоятки.

Когда поднята (показано на рисунке) рукоятка, рабочая жидкость из распределителя поступает в левый цилиндр, который включает муфту подъема груза и выключает тормоз -начинается подъем груза. При возвращении этой рукоятки в нейтральное положение рабочая жидкость из цилиндра направляется обратно в бак по линии и муфта подъема груза выключается, а тормоз тормозит барабан. Для опускания груза рукоятку опускают, включая муфту опуска.

При подъеме рукоятки масло из распределителя поступает в цилиндр, который включает муфту подъема стрелы в выключает тормоз.

Рис. 86. Гидравлическая схема навесного оборудования трубоукладчика TT-20I:
1 – блок-пульт управления, 2 - цилиндр-датчик, 3 - цилиндр автоматического включения» распределителя, 4 7, 8, 10 - цилиндры управления муфтами опускания и подъема коюка и стрелы; 5, б, 12 - однозолотниковые распределители, 9 - прерыватель, 11- цилиндр управления контргрузом, 13 – шестеренный насос, 14 – бак, 15, 19 – предохранительные клапаны прямого действия, 16 – фильтр, П – предохранительный клапан дифференциального-действия, 18 – обратный клапан, 20 – панель настройки прибора нагрузки, 21 – дроссель; 22 - указатель нагрузки

Когда стрела достигнет вертикального положения, буферное устройство нажмет на кулачок прерывателя подъем стрелы прекратится, так как масло через прерыватель из цилиндра на лебедке пойдет в бак по дополнительной сливной линии е. В этом случае муфта выключится и тормоз затянется. При опускании (показано на рисунке) рукоятки стрела) будет опускаться.

Предохранительный клапан обеспечивает необходимое для управления лебедкой и контргрузом давление рабочей жидкости в системе -около 7800 кПа и перепускает жидкость от насоса в бак по линии г при превышении в распределителе этого давления.

Трубоукладчик ТГ-201. Рабочая жидкость, нагнетаемая из бака (рис. 86) насосом, поступает по линии а к золотниковому распределителю. При нейтральном положении золотника рабочая жидкость поступает через распределитель одновременно по линиям б и в к однозолотниковым распределителям, а также достигает предохранительного клапана дифференциального действия, имеющего дистанционную разгрузку с помощью линии г. По этой линии, а также линии д, идущей от распределителя, жидкость сливается в бак при невключенных распределителях, последовательно проходя через них.

При перемещении золотника распределителя вправо или влево рабочая жидкость под давлением поступает в штоковую или поршневую полость гидроцилиндра, обеспечивая придвижение или откидывание контргруза. Как только контргруз достигнет крайнего положения, в гидросистеме возрастет давление до величины, на которую настроен предохранительный клапан прямого действия, и клапан сработает, начав перепускать жидкость в бак по линии е. Подача жидкости и ее слив прекратятся после выключения распределителя.

Для включения грузового барабана лебедки необходимо золотник распределителя передвинуть влево или вправо. Линия г дистанционной разгрузки окажется перекрытой в распределителе и рабочая жидкость поступит к цилиндрам включения муфт из линии в. Давление жидкости при ее подаче к цилиндрам будет ограничено величиной настройки предохранительного клапана дифференциального действия, который при превышении настроечного давления сработает и соединит линию в с дополнительной сливной линией ж, имеющей фильтр.

Включение стрелового барабана осуществляется перемещением.золотника распределителя. Рабочая жидкость будет поступать тс цилиндрам включения муфт стрелового барабана, причем к цилиндру ключения муфты подъема стрелы - через распределитель-прерыватель. Когда стрела подойдет к вертикальному положению, она нажмет на золотник распределителя-прерывателя, прекратится подача рабочей жидкости к цилиндру и автоматически остановится стрела.

Давление (4500 кПа), на которое настраивают предохранительный клапан дифференциального действия, меньше давления (9500 кПа) предохранительного клапана прямого действия, так как взаимодействующий с клапаном и распределителем цилиндр и контргруза требует большего давления, чем цилиндры, взаимодействующие с клапаном и распределителями.

Все распределители и клапаны гидросистемы трубоукладчика сосредоточены в кабине машиниста в виде единого блок-пульта, в который включена также панель настройки прибора контроля нагрузки. Этот прибор включает в себя цилиндр-датчик, контролирующий нагрузку, на крюке трубоукладчика, и цилиндр д автоматического включения распределителя управления грузовым барабаном лебедки, связанный с цилиндром-датчиком.

Рис. 87. Гидравлическая схема навесного оборудования трубоукладчика ТО-1224Г:
1 - фильтр, 2 - прерыватель, 3 и 4 - цилиндры управления фрикционной муфтой привод» лебедки и контргрузом, 5 и 6 - двух- и трех-позиционный распределители, 7 – манометр, 8 - предохранительный клапан, 9 - шестеренный насос, 10 - кран, 11 - бак

Увеличение нагрузки трубоукладчика приводит к росту давления в штоковой полости цилиндра-датчика, линии к и поршневой полости цилиндра автоматического включения. Под действием этого давления шток цилиндра перемещается вправо. Если при его перемещении левый из двух закрепленных на штоке упоров достигнет рукоятки распределителя, включится распределитель и начнется подача рабочей жидкости к цилиндру, что обеспечит работу грузового барабана на спуск трубопровода. При этом используется характерная черта упругого состояния трубопровода: с ростом его прогиба вверх нагрузка от него возрастает, а с уменьшением прогиба - падает. Как только прогиб трубопровода в результате работы барабана лебедки уменьшится, давление в цилиндрах снизится до нормального, контакт между левым упором штока цилиндра и рукояткой распределителя под действием пружины цилиндра прекратится и распределитель выключится, а барабан лебедки остановится.

Если давление в цилиндре-датчике из-за малой внешней нагрузки упадет ниже нормы, то пружиной цилиндра и укрепленным на ее штоке правым упором включится распределитель на подъемное вращение грузового барабана лебедки.

Панель настройки прибора контроля нагрузки включает в себя обратный клапан, регулируемый предохранительный клапан прямого действия, регулируемый дроссель и указатель нагрузки.

Трубоукладчик ТО-1224Г. Гидросистема работает следующим образом. При работающем двигателе трубоукладчика и включенном отборе мощности рабочая жидкость из бака (рис. 87) по линии а насосом подается к трехпозиционному распределителю. При нейтральном положении золотника распределителя рабочая жидкость поступает из него через распределитель идет на слив.

При перемещении золотника распределителя рукояткой в одно из крайних положений рабочая жидкость начинает поступать по линиям д или е в одну из полостей цилиндра, обеспечивая придвигание или отодвижку контргруза. Из другой полости рабочая жидкость вытесняется по противоположным линиям е или д, а затем поступает по линиям, на слив в бак через фильтр.

Когда машинист нажимает на рукоятку двухпозиционного распределителя, безнапорная циркуляция через него рабочей жидкости прекращается и жидкость поступает по линии ж к цилиндру управления фрикционной муфтой привода лебедки, обеспечивая включение привода. При упоре грузовой стрелы в буферное устройство верхней рамы и срабатывании распределителя-прерывателя подача рабочей жидкости к цилиндру прерывается, так как рабочая жидкость начинает поступать из линии ж в сливную Линию г и далее в бак.

В случае чрезмерного повышения давления в гидросистеме срабатывает предохранительный клапан и рабочая жидкость по линии и поступает в бак.

Гидравлический насос — оборудование, посредством которого механическая энергия преобразовывается в гидравлическую: из вырабатываемого двигателем крутящего момента образуется подача либо давление. Существует множество типов таких агрегатов, однако работают они по схожему принципу, суть которого заключается в вытеснении жидкости между камерами гидронасоса.

В данной статье будет рассмотрен гидравлический насос высокого давления и его ручной аналог. Мы изучим устройство и принцип действия такого оборудования, ознакомимся с его разновидностями и приведем рекомендации по монтажу и ремонту такой техники.

1 КЛАССИФИКАЦИЯ И РАЗНОВИДНОСТИ ГИДРОНАСОСОВ

Принцип работы любого гидронасоса достаточно прост — при работе внутри конструкции образуются две изолированные друг от друга полости (камера всасывания и нагнетания), между которыми перемещается гидравлическая жидкость. После заполнения камеры нагнетания жидкость начинает давить на поршень и вытесняет его, тем самым сообщая рабочему инструменту движение подачи.

Рабочие параметры любого гидронасоса отображают следующие характеристики:

  • частота вращения (об/мин);
  • рабочее давление (Бар);
  • рабочий объем (см3/об) — количество жидкости, которое насос вытесняет за один оборот.

Насосы, которые мы будем рассматривать в дальнейшем, обладают индивидуальными эксплуатационными особенностями, поэтому при их выборе в первую очередь необходимо учитывать характеристики существующей гидросистемы — диапазон давления, вязкость перекачиваемой жидкости, стоимость конструкции и нюансы ее технического обслуживания.

Рассмотрим основные разновидности гидронасосов, детально остановившись на их преимуществах и недостатках.

1.1 РУЧНОЙ ГИДРАВЛИЧЕСКИЙ НАСОС

Ручной гидронасос является простейшим оборудованием, в котором используется принцип вытеснения жидкости. Такие агрегаты широко распространены в сфере автомобилестроения, где они применяются в качестве дополнительных либо аварийных механизмов для обеспечения гидравлических двигателей энергией.

Ручной гидронасос типа НРГ (серия, наиболее распространенная в отечественной промышленности) может развивать давление дом 50 Бар, однако большинство моделей рассчитаны на давление до 15 Бар. Тут действует прямое соотношение — чем ниже рабочий объем агрегата (количество жидкости, вытесняемой за полный ход рукояти), тем большее давление он развивает.

На изображении представлена схема работы, которой обладают ручные насосы. При нажатии ручки поршень перемещается вверх, в результате чего создается сила всасывание и через клапан КО2 в корпус поступает жидкость, которая вытесняется при поднятии рукояти. Насос ручной гидравлический НРГ может быть и двухсторонним (нижняя схема), в нем всасывание и вытеснение жидкости происходит одновременно, как при нажиме на рычаг, так и при его поднятии.

К преимуществам таких гидронасосов относится простота их конструкции (ремонт гидронасосов ручного типа достаточно прост), надежность и низкая стоимость. Слабой стороной является производительность, несравнимая с приводным оборудованием.

1.2 РАДИАЛЬНО-ПОРШНЕВЫЕ

Радиально-поршневые конструкции способны развивать максимально возможное давление (до 100 Бар) при длительной работе. Существует два типа радиально-поршневых насосов:

  • роторные;
  • с эксцентричным валом.

Устройство роторных агрегатов показано на схеме. В них вся поршневая группа размещается внутри ротора, при вращении которого поршни совершают возвратно-поступательные движения и поочередно стыкуются с отверстиями для слива гидравлической жидкости.

Гидравлический насос высокого давления с эксцентричным валом отличается тем, что поршневая группа в нем установлена внутри статора, при этом такие насосы имеют клапанное распределение жидкости, а роторные — золотниковое.

К преимуществам такого оборудования отнесем высокую надежность, возможность работы в режиме высокого давления (100 МПа), минимальный уровень шума при работе. К недостаткам — высокий уровень пульсации при подаче жидкости и значительный вес.

1.3 АКСИАЛЬНО-ПОРШНЕВЫЕ

Наиболее распространенным типом оборудования в современных гидроприводах является аксиально-поршневой насос. Также существует аксиально-поршневая техника, которая отличается тем, что вместо поршней для вытеснения жидкости применяются плунжеры.

Насосы с аксиально-поршневым приводом, в зависимости от оси вращения поршневой группы, можно разделить на два типа — наклонные и прямые. Принцип работы у них идентичен — вращение вала насоса приводит к вращению блока цилиндров, параллельно которому поршни начинают возвратно-поступательное перемещение. При совпадении оси цилиндра и всасывающего отверстия поршень выдавливает жидкость из камеры, затем цилиндр заполняется и цикл повторяется.

По соотношению массогабаритных характеристик именно аксиально-поршневой насос является оптимальным вариантом. Он способен развивать давление до 40 МПа при частоте 5000 об/мин, узкоспециализированные установки работают на частоте 15-20 тыс. об/мин. Преимущества аксиально-поршневых насосов — максимальный КПД и производительность. Ключевым недостатком является высокая стоимость.

В качестве примера такой техники можно рассмотреть популярный в отечественном машиностроении гидронасос 310. Существует несколько модификаций данной модели, рассчитанных на рабочий объем от 12 до 250 см 3 /об. Цена 310-ой модели варьируется в пределах 15-30 тыс. рублей, в зависимости от производительности. Более доступным аналогом является гидронасос 210 (цена 10-15 тыс), отличающийся меньшей частотой оборотов.

1.4 ШЕСТЕРЕННЫЕ ГИДРОНАСОСЫ

Шестеренные агрегаты относятся к категории роторного оборудования. Гидравлическая часть насоса в них представлена двумя вращающимися шестернями, зубья которых при сцеплении вытесняют из цилиндра жидкость. Существует два типа шестеренчатых насосов — с внешним и внутренним зацеплениям, которые отличаются расположением шестерен внутри корпуса.

Используются шестеренные агрегаты в системах с низким уровнем рабочего давления — до 20 МПа. Они широко распространены в сельскохозяйственной и строительной технике, системах подачи смазочных материалов и мобильной гидравлике.

Популярность шестеренных гидронасосов обуславливается простотой их конструкции, небольшими размерами и весом, за которые приходится платить небольшим КПД (до 85%), низкими оборотами и коротким эксплуатационным ресурсом.

1.5 Разбираемся в устройстве гидронасосов (видео)


2 ОСОБЕННОСТИ РЕМОНТА ГИДРАВЛИЧЕСКИХ НАСОСОВ

Практически все неисправности, которые могут возникнуть при эксплуатации гидронасосов любого типа, являются следствием следующих факторов:

  • неправильное управление гидронасосом и пренебрежение его техническим обслуживанием — несвоевременная замена масла и фильтров, отсутствие устранения протечек;
  • неправильно подобранная гидравлическая жидкость (масло);
  • использование сторонних комплектующих, не соответствующих режиму эксплуатации насоса (фильтры, уплотнения, шланги);
  • неправильная настройка гидронасоса.

Рассмотрим наиболее распространенные неисправности оборудования и методы их ликвидации:

  1. Аварийная остановка. Причиной может быть разрыв рукава от чрезмерного давления, недостаточный уровень рабочей жидкости либо блокировка нагнетающего патрубка. В последнем случае нужно своими руками извлечь обломки из камеры и заменить деформированные фильтры.
  2. Отсутствие набора давления. Скорее всего заклинило гнездо плунжера, которое требует чистки, либо деформировалась пружина клапана (необходимо заменить).
  3. Неравномерный темп движения поршня. Проверьте систему на предмет проникновения воздуха, также может чрезмерно загустеть рабочая жидкость либо забиться фильтр. Серьезный ремонт гидравлических насосов может потребоваться лишь при поломке вала вращения.
  4. Необычно высокий уровень вибрации. Причина — неправильная балансировка вала вращения с приводом, требуется проверка совпадения осей валов и их центровка.

Мелкий ремонт гидронасоса не станет серьезной проблемой, если под рукой есть ремкомплект, в который входят запасные фильтры, резинки и уплотнительные втулки — наиболее изнашивающиеся элементы конструкции. Большинство производителей поставляют полные комплекты для каждой модели насоса по цене от 500 до 1000 рублей, однако комплект можно собрать и самому в соответствии с диаметром патрубков оборудования. В таком случае ремкомплект гидронасоса обойдется вас значительно дешевле.