Схема сигнализатора уровня воды в баке. Простой индикатор уровня воды

Индикатор(датчик) уровня воды на микроконтроллере PIC16F628А – устройство, которое позволит визуально контролировать уровень воды в непрозрачной ёмкости. Предлагаемое устройство может пригодиться всем, у кого есть загородный дом с летним душем или дача, огород, да что угодно лишь была бы емкость с водой. После некоторых модернизаций из индикатора получилось уровня воды.

Сам индикатор состоит из двух основных частей:

  1. Датчики уровня воды;
  2. Электроника, которая обрабатывает информацию, полученную от датчиков.

Теперь подробнее рассмотрим каждую из составных частей индикатора.

О схеме.

Схема индикатора собиралась из того, что было под рукой, и разрабатывалась вообще для микроконтроллера PIC16F84, но позже было принято решение добавить поддержку более дешевого и доступного микроконтроллера - PIC16F628A.

Принципиальная схема индикатора уровня воды (рисунок 1) проста, как пять копеек.

Рисунок 1 - Принципиальная схема индикатора уровня воды на микроконтроллере PIC16F628A

Рассмотрим основные узлы. Сердцем устройства является микроконтроллер PIC16F628A фирмы Microchip. Для стабильного питания которого, применяется выпрямитель на диодном мосте, конденсаторах и интегральном стабилизаторе L7805.

Для понижения напряжения настоятельно рекомендуется применить понижающий трансформатор, который обеспечит необходимую гальваническую развязку. Гасящие конденсаторы лучше не ставить, так как появляется риск оказаться под опасным потенциалом напряжения.

Датчики подключаются к схеме через барьерные резисторы.

Четыре светодиода отображают текущее количество воды в емкости. В зависимости от того какой датчик замыкает с общим проводом, светодиод того датчика и будет светиться. Весь перечень деталей сведён в таблицу 1.

Таблица 1 – Перечень компонентов для индикатора уровня воды на микроконтроллере PIC16F628А
Позиционное обозначение Наименование Аналог/замена
С1, С3 Конденсатор керамический – 15пФх50В
С2 Конденсатор электролитический - 470мкФх25В
С4 Конденсатор керамический – 0,1мкФмкФх50В
С5 Конденсатор электролитический - 1000мкФх10В
DA1 Интегральный стабилизатор L7805 L78L05
DD1 Микроконтроллер PIC16F628A PIC16F648A, PIC16F84
HL1-HL4 Светодиод 3мм
R1-R5, R11 Резистор 0,125Вт 5,1 Ом SMD типоразмер 0805
R6-R9 Резистор 0,125Вт 510 кОм SMD типоразмер 0805
R10 Резистор 0,125Вт 1 кОм SMD типоразмер 0805
R12-R15 Резистор 0,125Вт 180 Ом SMD типоразмер 0805
VD1 Диодный мост 1А х 1000В 2W10
XP1-XP4 Штекер платный
XT1-XT2 Клеммник на 2 контакта.
XT3 Клеммник на 3 контакта.
ZQ1 Кварц 4МГц типаразмер HC49

О датчиках.

В качестве датчиков используются тонкие хомуты из оцинкованной жести, которые, в свою очередь, располагаются на пластиковой трубе, на определенном расстоянии друг от друга. Труба крепится к тяжелому основанию(рисунок 2).


Рисунок 2 – Тяжелое основание для пластиковой трубы с датчиками.

К хомутам подводятся провода, соединяющие датчики и схему (можно использовать витую пару). Вся эта конструкция устанавливается в емкость с водой. Замыкать датчики между собой будет вода. Расстояния между датчиками выбираются произвольные. В моем случае, емкость была условно разделена на три части, и по уровню каждой части на трубе был установлен хомут. Если для емкости был предусмотрен перелив, то последний хомут должен быть установлен на уровне перелива.

Конструкция датчиков может быть и иной. Главное соблюдать требуемую последовательность.

Как работает.

Работает такая конструкция очень просто. На самом низу трубы (или на основании) крепится общий провод для работы с датчиками. Относительно этого провода будут происходить все измерения. Вода, наполняя емкость, постепенно начнет замыкать общий провод с датчиками. Первый на очереди - датчик 1. Когда общий провод с ним замкнется тогда включиться первый светодиод. Далее к первому датчику добавится второй датчик, при этом включится второй светодиод, а первый выключиться и т.д. Когда произойдет замыкание с четвертым датчиком - включиться четвертый светодиод. Который, в свою очередь, будет мерцать с частотой 2 Гц.

Подобный алгоритм работы можно легко организовать на обычной логике. Так поначалу и делалось, однако, из-за частых ошибочных состояний, было принято решение заменить схему на современное микроконтроллерное устройство. Рабочая программа для PIC-микроконтроллера была написана на языке ассемблер и отлажена в программе MPLab 8.8

Моделирование.

Работа устройства моделировалась в программе протеус см. рисунок 3. Модель сделана для микроконтроллера PIC16F84A! Внимательно выбираем прошивку.


Рисунок 3 – Модель уровня воды на микроконтроллере.

О печатной плате.

Печатная плата получилась размерами 55х50мм (рисунки 4-5 !!! не в масштабе) .


Рисунок 4 – Печатная плата индикатора уровня воды в баке на микроконтроллере PIC16F628A (низ) не в масштабе.


Рисунок 5 – Печатная плата индикатора уровня воды в баке на микроконтроллере PIC16F628A (верх) не в масштабе.

Внешний вид индикатора показан на рисунке 6.


Рисунок 6 – Готовая плата индикатора уровня воды.

Корпус.

Схему готового индикатора разместил в корпусе небольшого приемника рисунки 7-8.


Рисунок 6 – Готовая плата индикатора уровня воды на микроконтроллере PIC16F628A в корпусе приемника.


Рисунок 7 – Кнопка включения питания.

Отверстия для динамика заклеил клеем, а на лицевую сторону приклеил глянцевую фотография рисунки 8-9

Индикатор, собранный из заведомо рабочих деталей, начинает работать сразу и в наладке не нуждается.


Рисунок 8 – Заклееные отверстия.


Рисунок 9 – Лицевая панель индикатора уровня воды на микроконтроллере PIC16F628A.

Видео работы устройства.

В итоге получился совсем не плохой индикатор уровня воды в баке на микроконтроллере PIC16F628A, который не содержит дефицитных деталей, прост в изготовлении и не требует наладки. Добавлена поддержка микроконтроллеров PIC16F84, PIC16F648A. Печатная плата получилась 55х50 мм. Емкость, в которой будут размещены датчики, не нужно портить лишними отверстиями. Исправных компонентов и добра всем!!! Спасибо за внимание.

Схема:

На страницах радиолюбительских журналов представлено множество различных измерителей и индикаторов уровня воды. Обычно они сделаны в виде щупов с контактами, и для определения уровня используют свойство электропроводности воды. Здесь используется такой же метод, но число индицируемых уровней может быть 10. Щуп представляет собой пластмассовую трубку, длина которой должна соответ­ствовать глубине резервуара, наполняемого водой.

Устройство датчика:
Внутри трубки проходит по всей её длине луженая медная проволока толщиной около 1 мм. К этой проволоке припаяны резисторы R1 -R10, а выводы этих резисторов через отверстия в трубке выведены наружу. Затем, к выводам этих резисторов, выступающим наружу, припаиваются кусочки «нержавейки» (из нержавеющей стали), которые заранее нужно отформовать в кольца, и далее, под нагревом паяль­ника приклеиваются к корпусу трубки. Внутри трубки проложен еще один провод, идущий к нижней полоске «нержавейки», отформованной кольцом. Далее, после проверки всех соединений, внутренность трубки заливают эпоксидной смолой (или резиновым герметиком). Важно чтобы при заливке не образовались полости, в которые может проникать вода. Данная трубка является щупом, который; укрепляют так, чтобы он был погружен почти, до дна резервуара, а при максимальном заполнении резервуара все контактные кольца должны быть покрыты водой. Электрическая схема измерителя показана на рисунке 2.


Устройство измерительной схемы:
В её основе типовая схема измерителя уровня напряжения на основе микросхемы LM3914. Уровень воды индицируется шкалой из 10 светодиодов. Величины сопротивлений R1-R10 подобраны так, что число погруженных в воду контактных колец трубки-щупа оказывается равным числу светящихся светодиодов. Таким образом, высота столбика индикаторных светодиодов точно отображает степень заполнения резервуара. Электрически, щуп-трубка с резисторами R1-R10 образует переменное сопротивление, величина которого изменяется в зависимости от глубины погружения трубки. Это сопротивление вместе с резистором R11 образует делитель напряжения, поступающего на базу транзистора VT1. Соответственно этому напряжению изменяется напряжение на коллекторе VT1, по величине которого и определяется глубина погружения. Транзистор здесь пришлось поставить потому, что входное сопротивление микросхемы LM3914 согласно справочным данным равно 10 кОм. Это очень мало по сравнению с сопротивлением чистой воды. И еще один момент, требующий увеличения входного сопротивления, - для того чтобы имеющиеся в воде растворы солей и прочего не влияли на показания уровня воды, нужно чтобы входное сопротивление было таким высоким, что этими изменениями удельного сопротивления воды на практике можно было пренебречь. А так каскад на транзисторе VT1 увеличивает входное сопротивление до необходимой величины. Конденсатор С1 служит для устранения влияния наводок переменного тока, которые могут проникать через щуп-трубку или по соединительным проводам. Конденсатор С2 делает работу немного заторможенной, чтобы не происходило резкого изменения показаний от каких-то возмущений или волнений в воде, например, возникающих от механического действия насоса, закачивающего воду в резервуар. Соединяется схема индикатора со щупом-трубкой посредством экранированного кабеля, в качестве которого можно использовать практически любой экранированный провод, например, антенный телевизионный РК-75. Если расстояние невелико можно обойтись монтажным проводом или даже телефонной «лапшой». В любом случае, провод не должен быть погруженным в воду, так как это неизбежно приведет к его коррозийному повреждению. Для подключения используется разъемная пара (XP1-XS1) типа «Азия», - как в видеотехнике. Индикаторные светодиоды можно использовать любого типа, с напряжением падения не более 3V. Автор использовал отечественные красные светодиоды АЛ307, но лучше использовать светодиоды повышенной яркости, так индикация будет заметнее. Светодиоды HL1 и HL10 можно заменить мигающими. Это позволит привлечь внимание к критическим состояниям уровня воды. В типовой схеме LM3914 токоограничительных резисторов R19-R28 нет, но как оказалось, в таком режиме выходы LM3914 отдают неравномерный ток и яркость свечения светодиодов получается разной. Резисторы её уравнивают, разгружая выходы ключей микросхемы. Источник питания должен быть стабилизированным, так как от него зависит напряжение, поступающее на базу транзистора VT1. Кроме того, необходимо чтобы источник питания не имел гальванической связи выхода с электросетью (с целью электробезопасности). То есть, оптимальным будет вариант источника с маломощным силовым трансформатором, и интегральным стабилизатором на выходе, например, на микросхеме КР142ЕН8Б или 7812. За основу источника можно взять готовый сетевой адаптер, если он стабилизированный, то никаких изменений в него вносить не нужно. Можно сделать блок питания на основе любого маломощного силового трансформатора, с переменным напряжением на вторичной обмотке 12-15V. Затем, стандартный мостовой выпрямитель, сглаживающий конденсатор и интегральный стабилизатор. Вместо микросхемы LM3914 можно использовать другие аналогичные микросхемы, предназначенные для схем аналоговых индикаторов на светодиодах, но это потребует изменения значений сопротивлений резисторов R1-R10, а так же и их числа. Число этих резисторов должно соответствовать количеству порогов индикации, а соотношение их сопротивлений зависит от закона индикации (линейный, логарифмический). Кроме того, нужно будет выбрать соотношение резисторов R13 и R14 соответственно чувствительности индикаторной микросхемы. Резистором R15 устанавливают яркость горения светодиодов. Все детали индикаторной схемы расположены на макетной печатной плате, представляющей собой решето отверстий с шагом 2,54 мм, с металлизированными дорожками. Такие макетные платы сейчас в продаже встречаются чаще фольгированного стеклотекстолита, и стоят не намного больше. На мой взгляд, при единичном изготовлении электронных приборов лучше пользоваться такими макетными платами, так как разработка и изготовление единичного экземпляра всегда сливаются в процессе. На макетной плате проще проработать схему, внести изменения. Все конденсаторы должны быть на напряжение не ниже 16V.

Радиоконструктор №6 2009г стр. 32

Данная схема предназначена для индикации низкого уровня воды в расширительном бочке отопления. Как известно ввиду меняющегося давления в отопительной системе ввиду нагрева жидкости расширительный бочек делают открытого типа, в результате чего со временем часть воды выкипает, и это приводит к остановке циркуляции воды и в результате перегреву элементов печи. Данная схема показывает когда уровень воды опускается ниже датчика.

Транзисторы VT1 и VT2 включены по схеме усилителя с гальванической связью. R2 задает смещение на базу VT2 и в то-же время является нагрузкой VT1. R3 является нагрузкой VT2.

Если контакты будут находится в воде, то плюс питания окажется соединен с R1 посредством воды, в результате чего на базу VT1 попадет напряжение и он откроется, при этом транзистор VT2 будет закрыт и не инвертирующий вход ОУ будет соединен с минусом посредством R3. На выходе ОУ будет присутствовать логический 0 и первый светодиод будет гореть, сигнализируя о нормальном уровне воды.

Если уровень воды упадет и контакты окажутся разъединены, то напряжения на базе VT1 не будет и он будет закрыт. Соответственно база VT2 посредством R2 будет соединена с плюсом питания и VT2 откроется, соединив не инвертирующий вход ОУ с плюсом питания, тогда на выходе мы получаем логическую единицу, тогда будет гореть второй светодиод и сигнализировать о том что уровень воды мал.

Индикатор так-же имеет выход для подключения устройства звуковой индикации. В качестве которого можно использовать подключив вывод OUT индикатора уровня к выводу CONTR блока аудио-световой индикации. Так-же можно использовать схему подобную , подключив непосредственно между выводами OUT и GND.

Используемые детали: VT1 и VT2 любые маломощные, например BC547, BC337-40 или C9014. IC1- LM358 или 741. Светодиоды любые маломощные на напряжение 3-4В. Резисторы мощностью 0.125Вт. Питание схемы 9-15В.

В качестве датчика можно использовать любые 2 проводника, изолированных друг от друга и от бака. Можно использовать толстый двужильный провод, оголив концы. Датчик необходимо установить на уровень 1/3 бака с водой.

Плата имеет размер всего 15х40мм.


На видео работа схемы. Вода в стакане набрана из под крана.

Следующее видео:

Здесь устройство работает вместе с блоком аудио-световой индикации. При таком применении плату устройства необходимо установить возле датчика на крыше, а блок индикации в дом.

Оформлено все в пластиковый корпус с креплением для подвешивания на стену.


Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Операционный усилитель