Дифракционная решетка для лазера своими руками. Спектральный анализ в домашних условиях. Спектрометр с видеокамерой

Всем привет! Вы смотрите Огненное ТВ! Сегодня мы будем делать спектрометр !

Наверное уже все слышали о том, что для здоровья очень важно, что бы источники света в квартире и на работе имели полный спектр света.

Но как узнать какой спектр у вашей лампочки?

Потребуется спектрометр. Покупные стоят очень дорого, а самодельный можно сделать очень легко и для его изготовления не требуется особой точности.
Даже если у тебя вместо рук две ноги и обе левые, то все равно ты сможешь собрать эту штуку, и она будет работать!

Для начала изготовим корпус из плотной бумаги или картона. Я уже проверил пару вариантов и опытным путем подобрал необходимые размеры. Если вдруг вы решите собрать такую же штуку, то я начертил готовую схему, которую можно скачать на моем сайте, распечатать на обычном листе вырезать и склеить.

Внутренняя поверхность не должна отражать свет, иначе картинка будет засвечена.
Маркер отлично справится с этой задачей. Я закрасил все участки картона на которые может попадать свет.

Теперь потребуется дифракционная решетка. Именно она разбивает луч света на спектр.

Добыть ее можно из любого диска CD, DVD или Blu-ray

Структура оптических дисков устроена таким образом, что они имеют небольшие неровности, которые вызывают дифракцию света.

Штампованные диски имеют неровности в виде небольших черточек, а перезаписываемые чистые болванки изначально имеют ровные бороздки.

В принципе не важно какие диски использовать, но желательно чтоб эти бороздки или неровности были как можно чаще, DVD диски - это оптимальный вариант.

Сейчас проведем простейший эксперимент. Свет от лампочки будет падать на диск и часть отразится в виде небольшой радуги, это и будет спектр источника света.

Что бы захватить весь спектр, нужно придвинуть камеру очень близко.

Вот так выглядит спектр света, исходящего от светодиодной лампы.

А вот так выглядит спектр энергосберегающей лампы, разница огромная.

А вот спектр обычной лампы накаливания, видно, что в ее спектре очень много красной составляющей.

А вот это спектр видимого света ультрафиолетовой лампы, видно что кроме фиолетового в ней присутствует еще и зеленый.

Теперь сравним три разных болванки:

Тут мы видим, что у CD диска самый худший результат, цвета слишком размытые.

Разделение света на спектр можно увидеть, если посветить фонариком в центр диска, или поставить диск за горящей свечей, получается очень красивый эффект.

Возвращаемся к нашему спектрометру!

Вырезаем прямоугольный кусок подходящего размера.

После того, как диск обрезан со всех сторон, его очень легко можно разделить на две части, на зеркальную и прозрачную.

Нам понадобится прозрачная часть. Приклеиваю ее к картону.

Теперь аккуратно склеиваю корпус.

Получилось хорошо, но я как всегда капнул клеем на самую ответственную часть.
В принципе простейший прибор для наблюдения за спектром света готов.

Достаточно просто направить его на любой источник света и посмотреть на пластиковую пластинку.

Если прислонить получившуюся коробочку к камере смартфона, то можно сделать снимки и по ним проанализировать спектр, позже я покажу как это сделать.

Как видите, через такой прибор спектр видно более четко, особенно это заметно, если смотреть на люминесцентную лампу. Все пиковые значения видны более отчетливо.

Делать снимки - это не очень удобно, гораздо удобней анализировать источник света в реальном времени!

Для этого потребуется просто прислонить веб камеру прямо к пластиковой платине.

Можно было также придумать крепление из картона, но я решил изготовить более прочный вариант прибора из макетного пластика. Это вспененный пвх-пластик, один из моих любимейших материалов, его легко резать и легко склеивать суперклеем. Из него можно сделать все что угодно, я часто им пользуюсь и у меня спрашивали, как он называется и где его брать. Просто забейте в поиске «пенопвх» или «макетный пластик» и вы обязательно найдете то что нужно.

В пластиковом спектрометре я сделал выдвижную заслонку, что бы можно было регулировать количество света, попадающего внутрь прибора.

Для камеры я сделал небольшой корпус, предварительно вручную настроив ее фокус на объекты находящиеся примерно в одно метре от ее объектива.

Корпус с камерой креплю к основной части прибора таким образом, чтобы был небольшой зазор в который можно будет задвинуть кусок диска, я смогу менять их при необходимости.
сзади наклеиваю заглушку с прорезью, чтобы можно было вытолкнуть кусок диска из корпуса для замены.

Чтоб прибор уверенно стоял и его можно было четко настроить, я приделал ему ноги и закрепил их на куске фанеры. Теперь спектрометр можно направить на источник света и спокойно производить измерения.

Дальнейшая работа будет проводиться вот на этом сайте, ссылку на него вы тоже найдете в описании.
Нажимаем кнопку «захват спектра».

Двигаем прибором так, чтобы он получше поймал свет, регулируем заслонку, чтоб скорректировать яркость и жмем на центр нашей радуги, так чтоб желтая полоска проходила максимально через весь спектр. Считываться с камеры будут значения именно под этой полоской.

Нажимаем синюю кнопку «начать»

Видим, как появился график в реальном времени, но значения в нанометрах не совсем правильные, нужна калибровка.

На открывшейся странице нажимаем кнопку «калибровать».

Теперь нужно подтянуть синий и зеленый цвета, так, что бы пиковые значения примерно совпали с вашим спектром. Кстати, калибровать нужно только по свету энергосберегающих люминесцентных ламп, у них самый прерывистый спектр и можно увидеть пиковые значения.

После того, как синий и зеленый цвета подвинуты на свои места, снова нажимаем кнопку «захват спектра» и получаем спектр с откалиброванными значениями.

Если подвигать заслонкой, то можно видеть, как меняется яркость.

Я поставил лампу накаливания, и увидел, что ее спектре слишком много синего цвета, а такого не может быть, у ламп накаливание преобладает красный цвет в спектре.

Я вспомнил, что кусок DVD болванки был не прозрачный, а слегка фиолетовый. Этого было достаточно что бы сильно сдвинуть спектр в синюю сторону. Пришлось разрезать другой диск и найти прозрачный пластик, который не будет давать цветовых искажений.
После замены и калибровки все пришло в норму, в спектре лампы накаливания теперь много красного и мало синего.
Спектр светодиодной лампы очень похож на лампу накаливания.

А теперь лазерная указка!
Сложно попасть так, что бы получить стабильное значение, но все равно видно что основной пик приходится примерно на 650 нанометров.
Это соответствует заявленным характеристикам указанным на этикетке. 650 плюс-минус 10 нанометров.

И еще раз давайте глянем на ультрафиолетовую лампу.

Камера фиксирует только видимый спектр света, и может увидеть только синий, фиолетовый и немного зеленого.

С видиофиксацией спектра вроде разобрались, а что делать с фото сделанные на телефон?

Я открываю полученные фото в графическом редакторе, выделяю самую красивую часть спектра и растягиваю ее по высоте. Важно чтобы синяя часть спектра была слева или сверху, это необходимо для анализа.

Далее загружаю на сайт и калибрую как и раньше.
Спектр люминесцентной лампы легко калибруется, а вот со спектрами от других ламп придется постараться.
В принципе, если закрепить телефон и сделать снимки сначала люминесцентной лампы, а потом других источников света, не двигая телефон, чтобы ничего не сбилось, то можно тоже достаточно точно изучить их спектр.

Пользоваться сайтом для анализа спектра – не очень удобно, но я не нашел других вариантов, Если у вас есть идеи, как проанализировать спектр более удобным методом, то обязательно напишите их в комментариях.
У меня на этом все, до новых встреч, пока!

Чтобы узнать, какой спектр цвета излучает та или иная лампочка в доме, потребуется использовать прибор под названием спектрометр. Заводские модели стоят очень дорого, поэтому можно смастерить самодельный вариант из подручных материалов. Сделать его очень просто, поскольку в данном случае не потребуется особой точности.

Основные этапы работ

Самый примитивный вариант спектрометра можно изготовить из плотной бумаги или картона. Но обратите внимание, что внутренняя часть корпуса обязательно должна быть темной, чтобы не отражать, а поглощать свет. Для этой цели можно использовать обычный черный маркер (то есть нужно просто закрасить картон).


Для получения спектра излучаемого света потребуется также дифракционная решетка, которую лучше всего изготовить из оптического DVD-диска. Нужно просто вырезать из компакт-диска кусок прямоугольной формы, затем разделить пластины. Для дифракционной решетки необходим именно прозрачный слой.

Прямоугольную пластину приклеиваем к картону, а затем склеиваем и сам корпус. Работает самодельный спектрометр очень просто - достаточно направить его на источник света в доме и посмотреть на прозрачную пластину, вырезанную из DVD-диска. Если же прислонить к ней камеру смартфона, то можно делать снимки, и уже по ним потом анализировать спектр конкретной лампочки.


Спектрометр с видеокамерой

Нужно все-таки признать, что делать снимки со смартфона - не совсем удобно. Лучше всего наблюдать за источником света в режиме реального времени. Для этого вместо «глазка» смартфона к пластине необходимо прислонить обычную компьютерную веб-камеру.

На схеме: 1 - источник излучения, 2,4 - колиммирующая оптика, 3 - входная диафрагма, 5 - неподвижное зеркало, 6 - подвижное зеркало, 7 - привод зеркала, 8 - светоделительная пластинка, 9 - лазер опорного канала, 10 - фотоприемник опорного канала, 11 - фокусирующая оптика, 12 - фотоприемник сигнала.

Для того, чтобы стабилизировать скорость движения подвижного зеркала, и обеспечить «привязку» спектрометра к абсолютным значениям длин волн, в спектрометр вводят опорный канал, состоящий из лазера и его фотоприемника (9 и 12 на схеме). Лазер в таком случае выступает эталоном длины волны. В высококачественных спектрометрах для этих целей используют одночастотные газовые лазеры. В результате точность измерения длин волн получается очень высокой.

Фурье-спектрометры обладают и другими преимуществами по сравнению с классическими спектрометрами.
Важная особенность Фурье-спектрометров - при использовании даже одного фотоприемника, одновременно регистрируются все спектральные элементы, что дает энергетический выигрыш по сравнению с поэлементным механическим сканированием (выигрыш Фэлжетта).

Фурье-спектрометры не требуют использования оптических щелей, которые задерживают большую часть светового потока, что дает большой выигрыш в светосиле (выигрыш Жакино).

В Фурье-спектрометрах нет проблемы наложения спектров, как в спектрометрах с дифракционными решетками, за счет чего спектральный диапазон исследуемого излучения может быть очень широким, и определяется параметрами фотоприемника и светоделительной пластины.

Разрешающая способность Фурье-спектрометров может быть намного выше, чем в традиционных спектрометрах. Она определяется разностью хода подвижного зеркала Δ. Разрешаемый интервал волн определяется выражением: δλ = λ^2/Δ

Однако есть и важный недостаток - большая механическая и оптическая сложность спектрометра. Для возникновения интерференции оба зеркала интерферометра должны быть очень точно выставлены перпендикулярно друг другу. При этом одно из зеркал должно совершать продольные колебания, но перпендикулярность должна сохраняться с той же точностью. В высококачественных спектрометрах в некоторых случаях для компенсации наклона подвижного зеркала в процессе движения при помощи пьезоэлектрических приводов наклоняют неподвижное зеркало. Для получения информации о текущем наклоне измеряются параметры опорного луча от лазера.

Практика

Я абсолютно не был уверен в том, что можно сделать Фурье-спектрометр в домашних условиях, не имея доступа к нужным станкам (как я уже упоминал, механика - самая сложная часть спектрометра). Поэтому спектрометр делался поэтапно.

Одна из наиболее важных частей спектрометра - узел неподвижного зеркала. Именно его нужно будет юстировать (плавно перемещать) в процессе сборки. Нужно было обеспечить возможность наклонять зеркало по двум осям, и точно перемещать его в продольном направлении (зачем - ниже), при этом зеркало не должно наклонятся.

Основой узла неподвижного зеркала стал одноосевой столик с микрометрическим винтом. Эти узлы у меня уже были, нужно было только соединить их вместе. Для безлюфтовой связи я использовал простой прижим столика к микрометрическому винту пружиной, находящейся внутри основания столика.

Его я сделал, используя три юстировочных винта, снятых со сломанного теодолита. Металлическая пластина с приклеенным зеркалом прижимается пружинами к торцам этих винтов, а сами винты закреплены в металлическом уголке, прикрученном к
столику.

Конструкция понятна из фотографий:

Видны юстировочные винты зеркала и микрометрический винт.

Спереди видно само зеркало. Оно взято из сканера. Важная особенность зеркала - зеркальное покрытие должно быть спереди зеркала, и для того, чтобы интерференционные линии не были кривыми, поверхность зеркала должна быть довольно качественной.

Вид сверху:

Видны пружины, прижимающие столик в микрометрическому винту и крепление пластины с зеркалом к уголку.

Как видно из фотографий, узел неподвижного зеркала прикреплен к доске из ДСП. Деревянное основание интерферометра - явно не лучшее решение, но из металла в домашних условиях его было сделать проблематично.

Теперь можно проверить возможность получить интерференцию в домашних условиях - то есть собрать интерферометр. Одно зеркало уже есть, поэтому нужно добавить второе тестовое зеркало и светоделитель. У меня был светоделительный кубик, и я использовал именно его, хотя кубик в интерферометре работает хуже, чем светоделительная пластинка - его грани дают дополнительные переотражения света. Получилась такая конструкция:

На одну из граней кубика, не обращенную к зеркалу, нужно направить свет, а через другую можно наблюдать интерференцию.

После сборки зеркала расположены слишком не перпендикулярно, и поэтому нужно выполнить первичную юстировку. Ее я делал при помощи маломощного лазерного диода, соединенного с коллимирующей линзой достаточно большого диаметра. На лазер нужно подать очень маленький ток - такой, чтобы можно было смотреть прямо на кристалл. В результате получается точечный источник света.

Лазер устанавливается перед интерферометром, и его отражения в зеркалах наблюдаются через кубик. Для удобства наблюдения я приставил к кубику призму, направляющую вышедшее из кубика излучение вверх. Теперь, поворачивая юстировочные винты зеркала, нужно совместить два видимых отражения лазера в одно.

К сожалению, фотографий этого процесса у меня нет, и выглядит он не очень понятно - из-за бликов в кубике видно много светящихся точек. Все становится значительно понятней, когда начинаешь поворачивать юстировочные винты - часть точек начинает перемещаться, а часть остается на месте.

После того, как зеркала выставлены вышеописанным образом, достаточно увеличить мощность лазера - и вот она, интерференция! Выглядит она практически так же, как и на фотографии в начале статьи. Однако излучение лазера глазами наблюдать опасно, так что чтобы увидеть интерференцию, нужно установить после кубика какой-либо экран. Я использовал простой листок бумаги, через который видно интерференционные полосы - мощности и когерентности лазера хватает, чтобы создать достаточно контрастное изображение. Поворачивая юстировочные винты зеркала, можно изменять ширину полос - очевидно, что слишком узкие полосы наблюдать проблематично. Чем лучше интерферометр отъюстирован, тем шире полосы. Однако, как я уже упоминал, малейшие отклонения зеркал приводят к разъюстировке, и следовательно, линии становятся слишком узкими и неразличимыми. Чувствительность получившегося интерферометра к деформациям и вибрациям огромная - достаточно нажать на доску-основание в любом месте, и линии начинают перемещаться. Даже шаги в комнате приводят к дрожанию линий.

Однако интерференция когерентного лазерного света - это еще не то, что нужно для работы Фурье-спектрометра. Такой спектрометр должен работать с любым источником света, в том числе и белым. Длина когерентности белого света - около 1 мкм.
У светодиодов эта величина может быть больше - несколько десятков микрометров. Интерферометр формирует интерференционную картину только тогда, когда разность хода световых лучей для между каждым из зеркал и светоделителем меньше длины когерентности излучения. У лазера, даже полупроводникового, она большая - больше нескольких миллиметров, поэтому интерференция возникает сразу после юстировки зеркал. А вот даже от светодиода интерференцию получить в разы сложнее - перемещая зеркало в продольном направлении микрометрическим винтом, нужно добиться того, чтобы разность хода лучей попала в нужный микронный диапазон.

Однако, как я уже говорил, при перемещении, особенно достаточно большом (сотни микрон), из-за недостаточно качественной механики столика, зеркало может немного поворачиваться, что приводит к тому, что условия для наблюдения интерференции исчезают. Поэтому часто приходится вновь устанавливать вместо светодиода лазер и поправлять юстировку зеркала винтами.

В конце-концов, после получасовых попыток, когда уже казалось, что это совсем не реально, мне удалось получить интерференцию света от светодиода.

Как оказалось немного позже, вместо того, чтобы наблюдать интерференцию через бумажку на выходе кубика, лучше установить матовую пленку перед кубиком - так получается протяженный источник света . В результате интерференцию можно наблюдать непосредственно глазами, что заметно упрощает наблюдение.
Получилось вот так (видно отражение кубика в призме):

Потом удалось получить и интерференцию в белом свете от светодиодного фонаря (на фотографии видно матовую пленку - она обращена торцом к фотоаппарату и на ней видно тусклое пятно света от фонаря):

Если потрогать любое из зеркал, то линии начинают перемещаться и тускнеть, пока не исчезнут совсем. Период линий зависит от длины волны излучения, как показано на синтезированной картинке, найденной на просторах интернета:

Теперь, когда интерферометр сделан, нужно сделать узел подвижного зеркала взамен тестового. Изначально я планировал просто приклеить небольшое зеркало к динамику, и подавая на него ток, изменять положение зеркала. Получилась такая конструкция:

После установки, потребовавшей новой юстировки неподвижного зеркала, оказалось, что зеркало слишком сильно качается на диффузоре динамика и его несколько перекашивает при подаче тока через динамик. Тем не менее, изменяя ток через динамик, можно было плавно перемещать зеркало.

Поэтому я решил сделать конструкцию попрочней, используя механизм, который применяют в некоторых спектрометрах - пружинный параллелограмм. Конструкция понятна из фотографии:


Получившийся узел оказался значительно прочней предыдущего, хотя жесткость металлических пластинок-пружин вышла несколько высокой.

Слева - доска из оргалита, с отверстием-диафрагмой. Защищает спектрометр от внешних засветок.

Между отверстием и светоделительным кубиком установлена коллимирующая линза, приклеенная к металлической оправе:

На оправе виден специальный пластиковый держатель, в который можно вставлять матовую пленку (лежит в правом нижнем углу).

Установлен объектив для фотоприемника. Между объективом и кубиком установлено маленькое зеркало на поворачиваемом креплении. Оно заменяет призму, которая использовалась ранее. Фотография в начале статьи сделана именно через него. При повороте зеркала в положение для наблюдения оно перекрывает объектив, и регистрация спектрограммы становится невозможной. При этом нужно прекращать подавать сигнал на динамик подвижного зеркала - из-за слишком быстрых колебаний линии глазом не видны.

Внизу в центре виден еще один одноосевой столик. Изначально на нем был закреплен фотодатчик, но особых преимуществ столик не давал, и позже я его снял.

Спереди установил фокусирующий объектив от фотоаппарата:

Для упрощения юстировки и тестирования спектрометра установил красный фотодиод около диафрагмы.

Диод установлен на специальном поворотном держателе, так что его можно использовать как источник тестового излучения для спектрометра, поток света от объектива при этом перекрывается. Управляется светодиод выключателем, установленным под держателем.

Теперь стоит немного подробнее рассказать про фотодатчики. Изначально планировалось использовать только один обычный кремниевый фотодиод. Однако первые попытки сделать качественный усилитель для фотодиода оказались провальными, так что я решил использовать фотодатчик OPT101, который уже содержит в в себе усилитель с коэффициентом преобразования 1000000 (1 мка -> 1В).

Этот датчик работал довольно хорошо, особенно после того, как я снял вышеупомянутый столик, и точно выставил датчик по высоте.

Однако кремниевый фотодиод способен принимать излучение только в диапазоне длин волн 400-1100 нм.
Линии поглощения различных веществ обычно лежат дальше, и для их обнаружения нужен другой диод.
Для работы в ближней ИК области есть несколько типов фотодиодов. Для простого самодельного прибора наиболее подходят германиевые фотодиоды, способные принимать излучение в диапазоне 600 - 1700 нм. Эти диоды выпускались еще при СССР, поэтому они относительно дешевы и доступны.

Чувствительность фотодиодов:

Мне удалось достать фотодиоды ФД-3А, и ФД-9Э111. В спектрометре я использовал второй - он обладает несколько большей чувствительностью. Для этого фотодиода пришлось все же собрать усилитель. Он сделан с использованием операционного усилителя TL072. Для того, чтобы усилитель заработал, понадобилось обеспечить ему питание напряжением отрицательной полярности. Чтобы получить такое напряжение, я использовал готовый DC-DC преобразователь с гальванической развязкой.

Фотография фотодиода вместе с усилителем:

На обоих фотодиодах должен быть сфокусирован поток света из интерферометра. Для того, чтобы разделить поток света от объектива, можно было бы использовать светоделительную пластинку, однако это привело бы к ослаблению сигналов с диодов. Поэтому после объектива было установлено еще одно поворотное зеркало, при помощи которого можно направлять свет на нужный диод. В результате получился такой узел фотодатчиков:

В центре фотографии находится объектив, сверху на нем закреплен лазер опорного канала. Лазер тот же, что в дальномере , взятый из DVD привода. Лазер начинает формировать качественное когерентное излучение только при определенном токе. Мощность излучения при этом достаточно высокая. Поэтому, чтобы ограничить мощность луча, мне пришлось закрыть объектив лазера светофильтром. Справа закреплен датчик на OPT101, внизу - германиевый фотодиод с усилителем.

В опорном канале для приема излучения лазера используется фотодиод ФД-263, сигнал от которого усиливается операционным усилителем LM358. В этом канале уровень сигнала очень большой, так что коэффициент усиления - 2.

Получилась вот такая конструкция:

Под держателем тестового светодиода находится маленькая призма, направляющая луч лазера в сторону фотодиода опорного канала.

Пример осциллограммы, получаемой со спектрометра (источником излучения служит белый светодиод):

Желтая линия - сигнал, подаваемый на динамик подвижного зеркала, голубая линия - сигнал с OPT101, красная - результат Фурье-преобразования, выполняемого осциллографом.

Программная часть

Без программной обработки Фурье-спектрометр невозможен - именно на компьютере проводится обратное Фурье-преобразование, преобразовывающее интерферограмму, полученную от спектрометра, в спектр исходного сигнала.
В моем случае особую сложность создает то, что я управляю зеркалом синусоидальным сигналом. Из-за этого зеркало также движется по синусоидальному закону, и это значит, что его скорость постоянно меняется. Получается, что сигнал с выхода интерферометра оказывается промодулирован по частоте. Таким образом, программа должна производить еще и коррекцию частоты обрабатываемого сигнала.

Вся программа написана на C#. Работа со звуком производится при помощи библиотеки NAudio. Программа не только обрабатывает сигнал от спектрометра, но и формирует синусоидальный сигнал частотой 20 Гц для управления подвижным зеркалом. Более высокие частоты хуже передаются механикой подвижного зеркала.

Процесс обработки сигнала можно разделить на несколько этапов, и результаты обработки сигнала в программе можно просматривать на отдельных вкладках.

Сначала программа получает массив данных от аудиокарты. Этот массив содержит данные от основного и опорного каналов:

Вверху - опорный сигнал, внизу - сигнал от одного из фотодиодов на выходе интерферометра. В качестве источника сигнала в данном случае используется зеленый светодиод.

Обработка опорного сигнала оказалась довольно непростой. Приходится искать локальные минимумы и максимумы сигнала (отмечены на графике цветными точками), вычислять скорость движения зеркала (оранжевая кривая), искать точки минимума скорости (отмечены черными точками). Для этих точек важна симметричность опорного сигнала, так что они не всегда точно совпадают с реальным минимумом скорости.

Один из найденных минимумов скорости принимается за начало отсчета интерферограммы (отмечен красной вертикальной линией). Далее выделяется один период колебания зеркала:

Число периодов колебаний опорного сигнала за один проход зеркала (между двумя черными точками на скриншоте выше) указано справа: «REF PERIODS: 68». Как я уже упоминал, полученная интерферограмма промодулирована по частоте, и ее нужно скорректировать. Для коррекции я использовал данные о текущем периоде колебаний сигнала в опорном канале. Коррекция проводится путем интерполяции сигнала методом кубических сплайнов. Результат виден ниже (отображается только половина интерферограммы):

Интерферограмма получена, теперь можно выполнять обратное Фурье-преобразование. Оно производится при помощи библиотеки FFTW. Результат преобразования:

В результате такого преобразования получается спектр исходного сигнала в области частот. На скриншоте он пересчитан в обратные сантиметры (СМ^-1), которые часто используются в спектроскопии. Но мне все же больше привычна шкала в длинах волн, поэтому спектр приходится пересчитывать:

Видно, что разрешение спектрометра падает с ростом длины волны. Немного улучшить форму спектра можно, добавив в конец интерферограммы нули, что равносильно проведению интерполяции после выполнения преобразования.

Примеры полученных спектров

Излучение лазера:

Слева - на лазер подается номинальный ток, справа - значительно меньший ток. Как видно, при уменьшении тока когерентность излучения лазера падает, увеличивается ширина спектра.

В качестве источников использовались: «ультрафиолетовый» диод, синий, желтый, белый диоды, и два ИК диода с разными длинами волн.

Спектры пропускания некоторых светофильтров:

Показаны спектры излучения после интерференционных светофильтров, снятых с денситометра. В правом нижнем углу - спектр излучения после ИК фильтра, снятого с фотоаппарата. Стоит отметить, что это не коэффициенты пропускания этих фильтров - для измерения кривой пропускания светофильтра нужно учитывать форму спектра источника света - в моем случае это лампа накаливания. С такой лампой у спектрометра оказались определенные проблемы - как оказалось, спектры широкополосных источников света получаются как-то коряво. Я так и не смог выяснить, с чем это связано. Возможно проблема связана с нелинейным движением зеркала, возможно - с дисперсией излучения в кубике, либо плохой коррекцией неравномерной спектральной чувствительности фотодиода.

А вот и полученный спектр излучения лампы:

Зубцы на спектре справа - особенность работы алгоритма, компенсирующего неравномерную спектральную чувствительность фотодиода.

В идеале, спектр должен выглядеть вот так:

Испытывая спектрометр, нельзя не посмотреть спектр лампы дневного света - он имеет характерную «полосатую» форму. Однако при регистрации спектра Фурье-спектрометром спектра обычной лампы на 220В возникает проблема - лампа мерцает. Тем не менее, Фурье преобразование позволяет выделить более высокочастотные колебания (единицы кГц), даваемые интерференцией, из низкочастотных (100 Гц), даваемых сетью:

Спектр люминесцентной лампы, полученный промышленным спектрометром:

Все спектры выше были получены с использованием кремниевого фотодиода. Теперь приведу спектры, полученные с германиевым фотодиодом:

Первым идет спектр лампы накаливания. Как видно, он не очень-то похож на спектр реальной лампы (уже приведенный ранее).

Правей - спектр пропускания раствора медного купороса. Интересно, что он не пропускает ИК излучение. Небольшой пик на 650 нм связан с переотражением излучения лазера из опорного канала в основой.

Вот так снимался спектр:

Ниже идет спектр пропускания воды, справа от него - график реального спектра пропускания воды.
Дальше идут спектры пропускания ацетона, раствора хлорного железа, изопропилового спирта.

Напоследок приведу спектры солнечного излучения, полученные кремниевым и германиевым фотодиодами:

Неровная форма спектра связана с поглощением солнечного излучения веществами, содержащимися в атмосфере. Справа - реальная форма спектра. Форма спектра, полученного германиевым фотодиодом, заметно отличается от реального спектра, хотя линии поглощения находятся на своих местах.

Таким образом, несмотря на все проблемы, мне все же удалось получить в домашних условиях интерференцию белого света и сделать Фурье-спектрометр. Как видно, он не лишен недостатков - спектры получаются несколько кривые, разрешение получилось даже хуже, чем у некоторых самодельных спектрометров с дифракционной решеткой (в первую очередь это связано с малым ходом зеркала подвижного зеркала). Но тем не менее - он работает!

Теги: Добавить метки

В предыдущих статьях я описывал, как тестировал различные светодиоды для растений. Для анализа спектра я и взятые у знакомого учителя физики.

Но потребность в таком приборе появляется периодически и спектроскоп, а еще лучше спектрометр хотелось бы иметь под рукой.

Мой выбор — ювелирный спектроскоп с дифракционной решеткой

Раз вещь для ювелиров - то в комплекте шел «кожаный» чехол

Размеры у спектроскопа маленькие



Что в прочем было ясно из описания магазина
Собрано все крепко, так что расчлененки не будет.
Поверим и так, что с одной стороны трубки стоит объектив-линза, с другой дифракционная решетка и защитное стекло.

А внутри красивая радуга. Налюбовавшись ею вволю стал искать, а что бы такое посмотреть на спектре.
К сожалению, по прямому назначению спектроскоп применить не удалось, так как вся моя коллекция брильянтов и драгоценных камней ограничилась обручальным кольцом, совершенно непрозрачным и не дающим никакого спектра. Ну разве что в пламени горелки))).
Зато ртутная люминисцентная лампа честно дала много красивых полосок. Вволю налюбовавшись различными источниками света озадачился вопросом, что нужно картинку как то зафиксировать и спектр измерить.

Немного DIY

В голове уже давно крутилась картинка насадки на фотоаппарат, а под столом стоял , не прошедший еще последней модернизации, но вполне успешно справляющийся с ПВХ пластиком.



Конструкция получилась не очень красивой. Все таки люфты по X и Y я победил не до конца. Ничего ШВП уже лежат в сборе и ждут, когда опорные линейные рельсы приедут.


А вот функциональность получилось вполне приемлемой, чтобы радуга отобразилась на стареньком Canon, давно лежащем без дела.




Правда тут меня ждало разочарование. Красивая радуга становилась какой то дискретной.

Всему вина - RGB матрица любого фотоаппарата и камеры. Поигравшись с настройками баланса белого цвета и режимами съемки, я смирился с картинкой.
Ведь преломление света не зависит от того, каким цветом фиксировать изображение. Для спектрального анализа подошла бы и черно-белая камера с максимально равномерной чувствительностью по всей ширине измеряемого диапазона.

Методика спектрального анализа.

Путем проб и ошибок нарисовалась такая методика
1. Рисуется картинка шкалы видимого диапазона света (400-720нм), на ней обозначаются основные линии ртути для калибровки.

2. Снимается несколько спектров, обязательно с эталонным ртутным. В серии съемок нужно зафиксировать положение спектроскопа на объективе, чтобы исключить сдвиг спектра из серии снимков по горизонтали.

3. В графическом редакторе шкала подгоняется под ртутный спектр, а все остальные спектры масштабируются без горизонтального сдвига в редакторе. Получается что-то вроде этого

4. Ну а потом все загоняется в программу анализатор Cell Phone Spectrometer из этой статьи

Проверяем методику на зеленом лазере, у которого длина волны известна - 532нм

Погрешность получилась около 1% что при ручной методике подгона ртутных линий и рисования шкалы практически от руки очень даже неплохо.
Попутно узнал, что зеленые лазеры не прямого излучения, как красные или синие, а используют твердотельную диодную накачку (DPSS) с кучей вторичных излучений. Век живи - век учись!

Измерение длины волны красного лазера тоже подтвердило правильность методики

Для интереса померил спектр свечки

и горящего природного газа

Теперь можно мерить спектр светодиодов, например «полный спектр» для растений

Спектрометр готов и работает. Теперь буду готовить с его помощью следующий обзор — сравнение характеристик светодиодов разных производителей, дурят ли нас китайцы и как сделать правильный выбор.

Вкратце, полученным результатом доволен. Может быть имело смысл подключить спектроскоп к веб камере для непрерывного измерения спектра, как в этом проекте

Тестирование спектрометра моим помощником




Сейчас своими руками мы соберем два варианта дифракционного спектроскопа. Спектроскоп – прибор, который позволяет исследовать спектр света, за счет разведения его спектральных составляющих вдоль определенной оси. Разделить свет на монохроматические волны можно или за счет явления дисперсии, либо за счет дифракции. В данном случае мы будем использовать дифракцию, так как у нас под рукой есть отличная дифракционная решетка – компакт диск!

Нам понадобятся небольшая картонная коробочка, компакт диск, клей, непрозрачная трубочка для окуляра.

Вырежем ножницами кусочек компакт диска под размер коробочки:

Разметим коробочку так, что бы правильно установить окуляр. Из оптики мы знаем, что угол падения равен углу отражения. Но так мы увидим окошко, через которое будет проходить свет, а не дифракционные максимумы, поэтому правее от линии будущего окошка оставим место.

Затем закрыв коробочку подберем подходящее место для ввода света. Для этого будем аккуратно протыкать дырочку, и наблюдать в окуляр. Если в окуляре мы видим напрямую отраженный свет, то дырочку заклеиваем и протыкаем новую чуть дальше. И так до тех пор пока в окуляре не будет видно много цветных точек, выстроившихся вдоль линии. Затем прорежем оконце:

Установим на оконце световой нож из двух лезвий бритв – что бы в коробочку попадал максимально узкий пучек света – так мы будем видеть максимально четкую картину.

Если всё получилось – то мы увидим в окуляре разведенный спектр. Если спектр не непрерывный (например от ЛДС или газоразрядных ламп) то мы увидим набор линий. Каждая линия – монохроматическая составляющая. На фото самая верхняя линия на самом деле глубоко фиолетового цвета, просто фотоаппарат исказил цвет.

Вариант второй

Сделаем миниатюрный спектроскоп, работающий в проходящем свете. Для этого вырежем компакт диск как и в первом варианте.