Сигвей своими руками. Как сделать сегвей своими руками Программное обеспечение сигвея

Неужели такое сложное устройство, как сигвей, можно сделать самому? Оказывается, можно. Если приложить достаточно усердия и воспользоваться специальными знаниями. Что и сделал молодой инженер по имени Petter Forsberg, окончивший шведский технологический университет Чалмерса по специальности "Автоматизация и мехатроника".

Кроме знаний и умений, ему еще должны были понадобится немалые деньги, скажете вы. Да, деньги понадобились, но не много, около 300 евро, чтобы приобрести определенный набор деталей и оборудования. Результат его стараний - на этом видео:

Механика

Двигатели, колеса, цепи, шестерни и аккумуляторы были взяты от двух недорогих китайских электроскутеров. Двигатели позволяют обеспечить 24Вольт, 300Вт, 2750 оборотов в минуту.

Передача осуществляется от малой шестерни на моторе к большой шестерне на руле. Соотношение составляет примерно 6:1, такое высокое соотношение предпочтительнее, чтобы получить лучший крутящий момент и пониженную максимальную скорость. Передача на 12-дюймовом колесе была основана на механизме свободного хода, поэтому пришлось внести необходимые изменения, чтобы можно было водить колесо в обоих направлениях.

Основа платформы - неподвижная ось, на которой должны вращаться оба колеса. Ось крепится тремя алюминиевыми блоками, которые фиксируются с помощью 5мм установочных винтов.

Чтобы иметь возможность поворачивать при управлении сегвеем с помощью наклона рулевой колонки влево и вправо был выполнен чертеж необходимой детали в программе SolidWorks, после чего она была изготовлена на станке с ЧПУ. Программа для станка была написана с применением CAMBAM. Этот же метод был использован для производства коробки для электроники и сборки блока экстренного торможения.

Руль будущего сегвея представляет из себя обычный велосипедный руль, трубка которого присоединена к 25 мм стальной полой трубе. Чтобы сохранять положение рулевой колонки по центру и создать некоторое усилие для обратной связи были задействованы две стальные пружины. На руле также предусмотрена аварийная кнопка, которая подключена к стандартному реле от автомобиля и может снизить мощность двигателя.

Для питания используются два свинцовых аккумулятора 12V 12Ah, которые применяются для моторов на 24V.

Электроника

Все печатные платы были изготовлены специально для этой разработки. Главная плата берет на себя вычисления, собирает данные от датчиков, таких как гироскоп (ADXRS614), акселерометр (ADXL203) и подстроечный потенциометр, на основании чего способна определить в каком направлении вы хотите повернуть.

Основной процессор AVR ATmega168. Соединение с ноутбуком производится по Bluetooth с использованием RN-41. Два H-моста преобразуют сигналы управления от основной платы на усилие для двигателей. Каждый H-мост имеет ATmega168, связь между платами осуществляется через UART. Вся электроника работает на отдельной батарее (LiPo 7.4V 900mAh).

Чтобы иметь простой доступ к зарядке аккумуляторов, для программирования основной платы, изменения параметров контура управления была сделана небольшая коробка с необходимыми разъемами, переключателем питания электроники и подстроечного потенциометра на верхней стороне.

Программное обеспечение

Программное обеспечение микроконтроллера в основном состоит из фильтра для гироскопа и акселерометра и цикла PD управления. Для теста были взяты два фильтра: Kalman и Complemenatry. Оказалось, что производительность их была очень похожа, но для Complemenatry фильтра требуется меньше вычислений, поэтому именно он был выбран для использования. Также были написаны приложения на Java, чтобы можно было видеть все значения датчиков и сигналов управления, состояния батареи и т.д.

Техническая сторона создания сегвея своими руками на этом видео:

Сейчас всё более популярным делается небольшая самодвижущаяся платформа с двумя колёсами, так называемый Сигвей, который изобрёл Дин Камен. Замечая трудности, с которыми сталкивается человек в коляске при восхождении на тротуар, он увидел возможность создать транспортное средство, которое может помочь людям передвигаться без особых усилий. Камен применил на практике свою идею о создании самобалансирующейся платформы. Первая модель была испытана в 2001 году и это было средство передвижения с кнопками на ручке. Она была разработана для людей с ограниченными возможностями и позволяла им самостоятельно передвигаться даже по пересеченной местности. Новая модель стала известна как “Сигвей РТ”, и уже позволяла рулить, наклоняя влево или вправо рычаг. В 2004 году она начала продаваться в Европе и Азии. Цена самых продвинутых современных моделей, например Segway PTi2 - около 5000 долларов. В последнее время китайские и японские компании создают устройства с различными модификациями и новаторской конструкцией. Некоторые даже делают подобные транспортные средства только с одним колесом, но давайте рассмотрим классический Сигвей.


Segway состоит из платформы и двух колес, размещенных поперечно с приводом от двух электромоторов. Сама система стабилизируется сложной электронной схемой, которая управляет двигателями, принимая во внимание не только наклоны водителя, но и состояние транспортного средства, что позволяет ему всегда оставаться в вертикальном стабильном положении. Водитель, стоя на платформе, контролирует скорость просто перемещая ручку вперед или назад, при наклоне вправо или влево - поворот. Плата управления отслеживает сигналы соответствующих датчиков движения и ориентирования (похожие на те, которые позволяют смартфонам менять ориентацию экрана), чтобы помочь бортовому микропроцессору точно ориентировать платформу. Главный секрет segway не столько в электро-механической части, сколько в коде, который учитывает физику движения со значительной математической точностью обработки данных и предсказания поведения.

Сигвей оснащен двумя бесщеточными электромоторами, сделанных с применением сплава неодим-железо-бора, способными развивать мощность до 2 кВт, благодаря литий-полимерному аккумулятору.

Детали для Сигвея

Для создания Сигвея нужно два мотора-редуктора с колесами, аккумулятор, электронная схема, платформа и руль.

Мощность двигателя недорогих моделей примерно 250W, что обеспечивает скорость до 15 км/ч, с относительно низким потреблением тока. Напрямую крутить колеса не могут, потому что высокое число оборотов этих моторов не позволяют получить нужную тягу. Аналогично тому, что происходит, когда вы используете передач вашего велосипеда: за счет увеличения передаточного отношения потеряется скорость, но увеличится усилие, прикладываемое к педали.

Платформа расположена ниже оси моторов. Батарея, вес которой достаточно высок, также находятся под подножкой в симметричном положении, что гарантирует даже без водителя на борту Сигвей остается в вертикальном положении. Кроме того, внутренняя механическая стабильность поможет узлу электронной стабилизации, которая полностью активна, когда водитель присутствует. Присутствие человека на платформе поднимает центр тяжести выше оси колеса, что делает систему нестабильной - это уже будет компенсировать плате электроники.

В принципе, такую вещь можно сделать и самому, купив нужный блок электроники на китайском сайте (они есть в продаже). Монтаж всех частей осуществляется винтами и гайками (не шурупы). Особое внимание должно быть уделено надлежащему натяжению цепи. Крепление батарей осуществляется через U-образные хомуты с небольшими резиновыми прокладками, чтобы обеспечить нужное давление. Рекомендуется добавлять двухсторонний скотч между батареей и платформой, так чтоб не было проскальзывания. Контрольная панель должна быть вставлена между двумя батареями и крепится специальными распорками.

Рычаг управления может быть, а может и нет - ведь сейчас популярны модели сигвеев и без него (минисигвей). В общем вещь интересная и не очень дорогая, так как по информации от знакомых - закупочная оптовая цена в Китае всего 100 долларов.

Давайте поговорим о том как можно использовать Ардуино для создания робота, который балансирует как Сигвей.

Сигвей от англ. Segway – двухколесное средство передвижения стоя, оснащенное электроприводом. Еще их называют гироскутерами или электрическими самокатами.

Вы когда-нибудь задумывались, как работает Сигвей? В этом уроке мы постараемся показать вам, как сделать робота Ардуино, который уравновешивает себя точно так же, как Segway.

Чтобы сбалансировать робота, двигатели должны противодействовать падению робота. Это действие требует обратной связи и корректирующих элементов. Элемент обратной связи - , который обеспечивает как ускорение, так и вращение во всех трех осях (). Ардуино использует это, чтобы знать текущую ориентацию робота. Корректирующим элементом является комбинация двигателя и колеса.

В итоге должен получиться примерно такой друг:

Схема робота

Модуль драйвера двигателя L298N:

Мотор редуктора постоянного тока с колесом:

Самобалансирующийся робот по существу является перевернутым маятником. Он может быть лучше сбалансирован, если центр массы выше относительно колесных осей. Высший центр масс означает более высокий момент инерции массы, что соответствует более низкому угловому ускорению (более медленное падение). Вот почему мы положили батарейный блок на верх. Однако высота робота была выбрана исходя из наличия материалов 🙂

Завершенный вариант самостоятельно балансирующего робота можно посмотреть на рисунке выше. В верхней части находятся шесть Ni-Cd-батарей для питания печатной платы. В промежутках между моторами используется 9-вольтовая батарея для драйвера двигателя.

Теория

В теории управления, удерживая некоторую переменную (в данном случае позицию робота), требуется специальный контроллер, называемый ПИД (пропорциональная интегральная производная). Каждый из этих параметров имеет «прирост», обычно называемый Kp, Ki и Kd. PID обеспечивает коррекцию между желаемым значением (или входом) и фактическим значением (или выходом). Разница между входом и выходом называется «ошибкой».

ПИД-регулятор уменьшает погрешность до наименьшего возможного значения, постоянно регулируя выход. В нашем самобалансирующем роботе Arduino вход (который является желаемым наклоном в градусах) устанавливается программным обеспечением. MPU6050 считывает текущий наклон робота и подает его на алгоритм PID, который выполняет вычисления для управления двигателем и удерживает робота в вертикальном положении.

PID требует, чтобы значения Kp, Ki и Kd были настроены на оптимальные значения. Инженеры используют программное обеспечение, такое как MATLAB, для автоматического вычисления этих значений. К сожалению, мы не можем использовать MATLAB в нашем случае, потому что это еще больше усложнит проект. Вместо этого мы будем настраивать значения PID. Вот как это сделать:

  1. Сделайте Kp, Ki и Kd равными нулю.
  2. Отрегулируйте Kp. Слишком маленький Kp заставит робота упасть, потому что исправления недостаточно. Слишком много Kp заставляет робота идти дико вперед и назад. Хороший Kp сделает так, что робот будет совсем немного отклоняться назад и вперед (или немного осциллирует).
  3. Как только Kp установлен, отрегулируйте Kd. Хорошее значение Kd уменьшит колебания, пока робот не станет почти устойчивым. Кроме того, правильное Kd будет удерживать робота, даже если его толькать.
  4. Наконец, установите Ki. При включении робот будет колебаться, даже если Kp и Kd установлены, но будет стабилизироваться во времени. Правильное значение Ki сократит время, необходимое для стабилизации робота.

Поведение робота можно посмотреть ниже на видео:

Код Ардуино самобалансирующего робота

Нам понадобилось четыре внешних библиотеки, для создания нашего робота. Библиотека PID упрощает вычисление значений P, I и D. Библиотека LMotorController используется для управления двумя двигателями с модулем L298N. Библиотека I2Cdev и библиотека MPU6050_6_Axis_MotionApps20 предназначены для чтения данных с MPU6050. Вы можете загрузить код, включая библиотеки в этом репозитории .

#include #include #include "I2Cdev.h" #include "MPU6050_6Axis_MotionApps20.h" #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE #include "Wire.h" #endif #define MIN_ABS_SPEED 20 MPU6050 mpu; // MPU control/status vars bool dmpReady = false; // set true if DMP init was successful uint8_t mpuIntStatus; // holds actual interrupt status byte from MPU uint8_t devStatus; // return status after each device operation (0 = success, !0 = error) uint16_t packetSize; // expected DMP packet size (default is 42 bytes) uint16_t fifoCount; // count of all bytes currently in FIFO uint8_t fifoBuffer; // FIFO storage buffer // orientation/motion vars Quaternion q; // quaternion container VectorFloat gravity; // gravity vector float ypr; // yaw/pitch/roll container and gravity vector //PID double originalSetpoint = 173; double setpoint = originalSetpoint; double movingAngleOffset = 0.1; double input, output; //adjust these values to fit your own design double Kp = 50; double Kd = 1.4; double Ki = 60; PID pid(&input, &output, &setpoint, Kp, Ki, Kd, DIRECT); double motorSpeedFactorLeft = 0.6; double motorSpeedFactorRight = 0.5; //MOTOR CONTROLLER int ENA = 5; int IN1 = 6; int IN2 = 7; int IN3 = 8; int IN4 = 9; int ENB = 10; LMotorController motorController(ENA, IN1, IN2, ENB, IN3, IN4, motorSpeedFactorLeft, motorSpeedFactorRight); volatile bool mpuInterrupt = false; // indicates whether MPU interrupt pin has gone high void dmpDataReady() { mpuInterrupt = true; } void setup() { // join I2C bus (I2Cdev library doesn"t do this automatically) #if I2CDEV_IMPLEMENTATION == I2CDEV_ARDUINO_WIRE Wire.begin(); TWBR = 24; // 400kHz I2C clock (200kHz if CPU is 8MHz) #elif I2CDEV_IMPLEMENTATION == I2CDEV_BUILTIN_FASTWIRE Fastwire::setup(400, true); #endif mpu.initialize(); devStatus = mpu.dmpInitialize(); // supply your own gyro offsets here, scaled for min sensitivity mpu.setXGyroOffset(220); mpu.setYGyroOffset(76); mpu.setZGyroOffset(-85); mpu.setZAccelOffset(1788); // 1688 factory default for my test chip // make sure it worked (returns 0 if so) if (devStatus == 0) { // turn on the DMP, now that it"s ready mpu.setDMPEnabled(true); // enable Arduino interrupt detection attachInterrupt(0, dmpDataReady, RISING); mpuIntStatus = mpu.getIntStatus(); // set our DMP Ready flag so the main loop() function knows it"s okay to use it dmpReady = true; // get expected DMP packet size for later comparison packetSize = mpu.dmpGetFIFOPacketSize(); //setup PID pid.SetMode(AUTOMATIC); pid.SetSampleTime(10); pid.SetOutputLimits(-255, 255); } else { // ERROR! // 1 = initial memory load failed // 2 = DMP configuration updates failed // (if it"s going to break, usually the code will be 1) Serial.print(F("DMP Initialization failed (code ")); Serial.print(devStatus); Serial.println(F(")")); } } void loop() { // if programming failed, don"t try to do anything if (!dmpReady) return; // wait for MPU interrupt or extra packet(s) available while (!mpuInterrupt && fifoCount < packetSize) { //no mpu data - performing PID calculations and output to motors pid.Compute(); motorController.move(output, MIN_ABS_SPEED); } // reset interrupt flag and get INT_STATUS byte mpuInterrupt = false; mpuIntStatus = mpu.getIntStatus(); // get current FIFO count fifoCount = mpu.getFIFOCount(); // check for overflow (this should never happen unless our code is too inefficient) if ((mpuIntStatus & 0x10) || fifoCount == 1024) { // reset so we can continue cleanly mpu.resetFIFO(); Serial.println(F("FIFO overflow!")); // otherwise, check for DMP data ready interrupt (this should happen frequently) } else if (mpuIntStatus & 0x02) { // wait for correct available data length, should be a VERY short wait while (fifoCount < packetSize) fifoCount = mpu.getFIFOCount(); // read a packet from FIFO mpu.getFIFOBytes(fifoBuffer, packetSize); // track FIFO count here in case there is > 1 packet available // (this lets us immediately read more without waiting for an interrupt) fifoCount -= packetSize; mpu.dmpGetQuaternion(&q, fifoBuffer); mpu.dmpGetGravity(&gravity, &q); mpu.dmpGetYawPitchRoll(ypr, &q, &gravity); input = ypr * 180/M_PI + 180; } }

Значения Kp, Ki, Kd могут работать или не работать. Если они этого не делают, выполните шаги, описанные выше. Обратите внимание, что наклона в коде установлен на 173 градуса. Вы можете изменить это значение, если хотите, но обратите внимание, что это угол наклона, которым должен поддерживаться роботом. Кроме того, если ваши двигатели слишком быстры, вы можете отрегулировать значения motorSpeedFactorLeft и motorSpeedFactorRight.

На этом пока всё. До встречи.

Привет всем мозгочинам ! В моем новом мозгопроекте я буду создавать своими руками самобалансирующееся транспортное средство или «Сегвей». Для данного проекта нужны базовые знания в электронике и умение работать вручную. Все механические компоненты можно приобрести в сети Интернет или в местном магазине.

СЕГВЕЙ состоит из платформы, на которой стоят в вертикальном положении, и двух боковых электродвигателей, приводимых в действие с помощью аккумуляторов. Алгоритм контроллера управления обеспечивает устойчивое положение. Перемещение сегвея контролируется водителем путем наклона его туловища, и ручкой для выбора направления движения влево/вправо. Поэтому вам понадобятся дополнительные компоненты, такие как контроллер, привод двигателя и датчик ускорения/гироскоп. Механическая конструкция изготовлена из дерева, поскольку оно имеет легкий вес, электрически изолировано и легко поддается обработке. Теперь приступим к изготовлению сегвея!

Шаг 1: Основные характеристики проекта

В настоящем проекте требуется изготовить устройство со следующими характеристиками:

— Достаточная мощность и устойчивость для езды по улице, и даже по гравийной дорожке;
— 1 час непрерывной работы
— Общая стоимость до 500€ евро
— Возможность беспроводного управления
— Запись данных на SD-карту для выявления поломок

Шаг 2: Проектирование системы

Датчик наклона установлен горизонтально вдоль оси х, а вертикально вдоль оси у.

Шаг 5: Тестирование и настройка

Примите во внимание, что двигатели должны иметь достаточную мощность. Проверьте устройство в широкой и безопасной зоне, чтобы избежать получения травм или повреждений. Рекомендуется надевать защитные щитки и шлем.

Выполните пошаговую процедуру. Начните с программирования микроконтроллера Arduino (загрузите ), далее проверьте связь с датчиками и мостовой схемой управления.

Arduino Terminal может использоваться для отладки программного кода и проверки работоспособности. Например, нужно настроить усиление ПИД-регулятора, поскольку оно зависит от механических и электрических параметров двигателя.

Усиление настраивается по данной процедуре:
1. Параметр Kp предназначен для балансировки. Увеличивайте Kp, пока балансировка станет нестабильной, Ki и Kp остаются 0. Незначительно снизьте Kp для получения устойчивого состояния.
2. Параметр Ki предназначен для ускорения/снижения ускорения при наклоне. Увеличьте Ki для получения правильного ускорения, чтобы избежать падения при наклоне вперед, Kp остается 0. Теперь балансировка должна стать стабильной.
3. Параметр Kd используется для компенсации включения и возврата к устойчивому положению.

В программе Terminal, вы можете выполнять различные команды «?».
? – Помощь при выборе команд
p,i,d [целочисленное значение] — Установите/Получите усиление ПИД-регулятора, значение от 0 до 255
r [целочисленное значение] – принудительное увеличение скорости двигателя, значение от -127 до 127
v – версия программного обеспечения
С помощью команды «p» вы получаете доступ к параметру Kp. Команда «p 10» позволяет установить Kp до значения 10.

После подачи питания на Arduino выполняется инициализация датчиков и переход в состояние ожидания. При нажатии нажимной кнопки происходит передача управляющего сигнала в контроллер СЕГВЕЯ, находящегося в вертикальном положении, который готов для активации двигателей для перемещения вперед или назад в зависимости от первоначального положения. С этого момента кнопку нужно держать нажатой постоянно, в противном случае двигатели выключатся, и контроллер перейдет в состояние ожидания. После достижения вертикального положения, контроллер ожидает сигнал концевого выключателя нагрузки “Водитель на месте”, который обычно нажимают ногой, когда водитель находится на платформе. После этого запускается алгоритм балансировки и происходит активация двигателей вперед или назад для того, чтобы остаться в вертикальном положении. Наклон вперед создает поступательное движение вперед и наоборот. Нахождение в наклоненном положении приводит к ускорению движения. Наклон в противоположном направлении приводит к снижению скорости. Для перемещения влево и вправо используйте ручку.

Шаг 6: Демо

Смотрите ниже видео готового устройства и спасибо за внимание!

Китайский сигвей – фото внешнего вида

До недавнего времени я вообще не знал, как называется “ну, такая каталка на двух колёсах, ехать стоя”. Недавно узнал, что этот электросамокат на двух колесах называется Сегвей или Сигвей , по-английски – Segway . Кто до сих пор не понял, о чем речь – фото слева.

Подробнее об этом замечательном двухколесном самокате можно узнать в википедии или на сайтах продавцов, я же опишу его коротко, и перейду к главному – устройству и ремонту сигвея. Будет много фото, а также подробное описание электрической схемы сигвея.

Это замечательное устройство позволяет человеку легко передвигаться на двух колёсах. При этом в систему управления сигвеем входит система балансировки, практически исключающая возможность падения.

Слово “практически” меня всегда настораживает. Так и в этот раз.

Но обо всём по порядку.

Поломка сигвея

Моя история началась как раз с того, что человек на сигвее упал. Ехал на приличной скорости, и – носом в асфальт!

Я начал разбираться, в чём дело. Оказалось, что при повороте ключа зажигания из этого ключа шли искры, и колеса при этом были заторможены. Ошибок на дисплее не было, но это только потому, что аппарат фактически не мог включиться – искрение в контактах замка привело к тому, что контакты покрылись нагаром, и ток от батареи не поступал на схему.

Странно, что контакты не пригорели и не слиплись намертво, впрочем, тогда бы выгорела проводка, т.к. при токе около 100 Ампер предусмотрено не было, а штатные предохранители остались целы.

Да, стоит сказать, что этот сигвей был дешевой подделкой, и куплен дней за десять до поломки. Всё было написано по китайски (насколько я разбираюсь в китайском), кроме “Warning!” Впрочем, о качестве сборки можно будет судить по фото.

Причина поломки – сгорели силовые транзисторы, через которые питались двигатели. Но об этом подробнее чуть позже.

Устройство сигвея. Разборка

Что мне конкретно понравилось – это колёса с солидными протекторами. То есть, предполагается, что этот самокат может использоваться в тяжелых условиях.

Однако, платы вообще не защищены от воздействия влаги, нет даже никакого лака. И вообще никаких резиновых прокладок от влаги не предусмотрено…

Руль прикручивается, его можно открутить при транспортировке:

Крепление руля. Вид спереди.

А вот вид сзади:

Предохранители и разъем зарядки

Видно два предохранителя по 50 А (схема сигвея будет чуть ниже), разъем заряда аккумулятора, над всем этим – “фары” в виде светодиодов на 12 В.

Верхняя панель. На ней – основные органы управления и индикации:

Верхняя панель сигвея

Вверху – дисплей, который показывает заряд батареи, ниже – предупреждения, которые необходимо внимательно прочитать, прежде чем становиться за руль. Если что непонятно – позвонить по телефону)

Три светодиода индицируют состояние сегвея: 1 – поворот влево, 2 – поворот вправо, 3 – горизонтальное положение (положение, в котором человек может становиться и начинать движение)

А что там свежего в группе ВК СамЭлектрик.ру ?

Подписывайся, и читай статью дальше:

Снимаем колёса.

Снято колесо

Сигвей со снятыми колесами

Снимаем переднюю панель.

Снимаем верхнюю крышку

Выглядит весьма непрезентабельно, но это только начало.

Передняя панель сзади. Провода откинуты. Замок снят.

К рулевой колонке рулю, который поворачивается только вправо и влево, приделан переменный резистор, распознающий наклон руля, и дающий сигнал контроллеру на поворот.

Переменный резистор наклона руля

Сопротивление – 10 кОм, линейная характеристика.

Так и хочется сказать – “потроха”

Как я уже говорил, качество сборки отвратительное. Хотя, по механике особых претензий нет.

Электронная начинка сигвея

Теперь подробнее рассмотрим электронику сигвея.

Вот фото подключения платы управления.

Устройство крупнее и подключение платы

Силовые транзисторы – IRF4110:

Силовые транзисторы платы управления

Именно парочка этих транзисторов и сгорела. При этом эта пара замкнула на себя питание аккумулятора, образовав КЗ.

Электронная схема сигвея – общий вид

Рассмотрим элементы схемы подробнее.

Электронная схема сигвея – общий вид – другой ракурс

Схема в общем не большая, разобьем её на несколько частей – приемник, контроллер, электронный гироскоп, драйвера транзисторов, силовые транзисторы, блок питания.

Микросхемки IC3, IC4 – это радиоканал, который позволяет управлять сигвеем с пульта. То есть, настраивать его, калибровать, блокировать, диагностировать.

Микросхема IC2 – контроллер ATMEGA 32A. Это сердце сигвея, точнее, мозг. Тут заложено самое главное – программа, алгоритм работы. Именно эта программа управляет вращением колёс и не дает человеку упасть.

Если контроллер – мозг, то гироскоп – это органы чувств. Гироскоп – это маленькая микросхемка INVENSENCE MPU6050. Это замечательное устройство представляет собой трехканальный измеритель положения в пространстве (наклон по трем осям) и трехканальный измеритель ускорения. Если кто помнит из физики, ускорение – это скорость изменения скорости. Честно, не понимаю, как в этот чип можно впихнуть такие измерители. Я до сих пор знал электромеханические гироскопы, а акселерометры знал только электронные. Теперь узнал, что бывают и такие, и используются очень широко, в основном в мобильной и автомобильной электронике.

На последнем фото также видно две микросхемы буферов CD4001 (это 2И-НЕ). Это для развязки контроллера и остальной схемы. Далее сигнал управления поступает на драйвера IR2184S, которые подают напряжения на затворы силовых полевиков, фото которых я давал выше.

Блок питания XL7015 – преобразователь DC-DC, из плавающего постоянного напряжения около 48В он путем преобразований на частоте несколько килогерц выдает стабильное постоянное напряжение 15В. Далее – обычная КРЕНка 7805 выдает 5 Вольт. Желтая топорная перемычка была, я тут ни при чём. А вот сгоревшая дорожка вверху справа – это путь питания 0В на управление, её пришлось восстанавливать.

Слаботочные элементы схемы сигвея соединяются через кросс-плату:

На эту плату приходят сигналы: от потенциометра руля, от кнопок наличия человека, к светодиодам панели управления. И уходят провода на главную плату.

Вот двигателя с редукторами, на оси которых непосредственно насаживаются колёса. Добротно сделано, только никаких опознавательных знаков:

Двигатель колеса с редуктором

Аккумулятор тоже не содержит никаких надписей:

Аккумулятор 48В

Входят два провода для зарядки (потоньше) и два выходных провода.

Видите искореженные места? Аккумулятор вообще никак не закреплен, болтается в сигвее, и бьётся об острые края ребер жесткости.

В общем, сделано на … короче, плохо сделано, и так или иначе скорая поломка сигвея была неизбежной.

Ещё примочка – преобразователь, также валялся на дне, замотан в плёнку. Поскольку светодиоды габаритных огней рассчитаны на напряжение 12 В, а аккумулятор – на 48 В, то используется преобразователь постоянного напряжения DC-DC 48-12 В:

Схема сибвея

Ремонт segway

Ремонт сибвея свелся к замене силовых транзисторов, их драйвера, и резисторов обвязки. Также восстановлена перегоревшая дорожка, замок с ключом заменен на обычные тумблеры, и в схему включен защитный автомат на 63 А. Надеюсь, в случае чего, он спасет схему от выгорания.

Только в этом случае опять пострадает и чей-то нос.

Так что прогноз пессимистичный, покупайте только качественные вещи, особенно, если речь идёт о безопасности! Теперь понятно, почему на всех фото ездок на сигвее с надетым шлемом…

Езда на Segway

Езда на подобном оригинальном внедорожном сигвее (в спокойном режиме) показана на видео:

Также в видео подробно рассказано про технические характеристики этого замечательного устройства.