Шлифование на токарном станке. Отделка поверхностей методом токарной обработки. Правка шлифовального круга

Специалисты машиностроительных предприятий, посещающие зарубежные выставки металлообрабатывающего оборудования, являются свидетелями успеха такого технического решения, как совмещение на одном станке нескольких технологических операций и даже процессов, причем в различных сочетаниях. Кажется, уже не осталось в производстве операций, даже самых трудносочетаемых, которые не объединили бы в попытке повысить точность и производительность обработки путем снижения числа переустановов.

Эта идея, зародившаяся давно и реально воплощенная в 1992 году фирмой Emag, представившей на выставке METAV92 вертикально-токарный станок перевернутой компоновки, стала реальной материальной силой уже спустя несколько лет. Доказательством того служат свыше 5000 станков такой компоновки, проданных на различные заводы, — главным образом автомобильные и тракторные. На ее базе стала возможной и комбинация точения, преимущественно твердого, для труднообрабатываемых сталей и сплавов твердостью свыше 45HRC, с абразивной обработкой, также впервые в мире осуществленная в 1998 году той же фирмой Emag, но уже совместно с вошедшей в ее состав фирмой Reinecker на станке мод. VSC250DS (рис. 1).

Когда преимущества очевидны

С тех пор преимущества этой компоновки стали очевидны многим другим немецким, швейцарским и итальянским фирмам, выпускающим, как токарные, так и шлифовальные станки. Для токарных центров они заключаются в возможности использования сухого и твердого точения, а в некоторых случаях и шлифования за один установ деталей небольшого диаметра (до 400 мм, только у станка G 250 фирмы Index диаметр обработки достигает 590 мм), но достаточно большой длины. Таких деталей типа зубчатых колес, различных дисков немало встречается в автомобильной промышленности.
Кроме того, повышаются производительность обработки, поскольку припуск под шлифование после точения можно довести до нескольких сотых миллиметра (реально он достигает обычно нескольких десятых), и ее точность, которая, в конечном счете, определяется шлифованием. К настоящему времени такие комбинированные станки выпускают несколько фирм, преимущественно немецких, основной сферой деятельности которых является, как показано в таблице 1, производство не только токарных центров (Emag, Index, Weisser), но и шлифовальных станков (Junker, Buderus Schleifmaschinen, Schaudt Mikrosa BWF). Их стоимость колеблется в значительных пределах и определяется, прежде всего, компоновкой, конструктивным исполнением и комплектацией.

Выставка ЕМО 2003 показала, что интерес к комбинированным станкам для твердого точения и шлифования нарастает. Наряду с фирмами Emag, Index, Weisser, Buderus, Schaudt Mikrosa BWF, ранее экспонировавшими станки для комбинированного точения и шлифования, аналогичную продукцию продемонстрировали и другие производители станочного оборудования. Например, фирма Tacchella (Италия) показала опытный образец круглошлифовального станка Concept, оснащенного 8-позиционной револьверной головкой с неподвижными инструментами (рис. 2), а фирма Meccanodora (Италия) — серийный станок Futura для твердого точения и фрезерования, а также наружного и внутреннего шлифования деталей трансмиссий. Станок Stratos М, впервые показанный фирмой Schaudt Mikrosa BWF на выставке ЕМО 2001, был дополнительно оснащен 8-позиционной револьверной головкой.

Комбинированная обработка

У деталей, проходящих через токарно-шлифовальный центр, например валов электродвигателей, в большинстве случаев не требуется шлифования всех поверхностей — в основном лишь опорных или наиболее изнашиваемых. Для остальных вполне достаточно точения. В подобных случаях, когда жесткие размерные допуски и высокое качество поверхности необходимы лишь на отдельных участках детали, полностью оправдано использование токарных станков с возможностью шлифования, тем более что обработка на них происходит за один установ. Если же у заготовки имеется множество ступеней, большая часть которых подлежит шлифованию, то ее нужно обрабатывать на шлифовальном станке с возможностью точения.

Таким образом, на шлифовальном станке обработку ведут в том случае, если:

  • заготовки выполнены из труднообрабатываемых материалов, не поддающихся или с трудом поддающихся точению;
  • требуемые допуски превосходят достижимые при точении;
  • требуемое качество поверхности настолько высоко, что его нельзя обеспечить при точении, в том числе твердом.

Токарный же станок используют для обработки, когда:

  • сложная геометрия заготовки делает обработку лезвийным инструментом с точечной режущей кромкой (например, резцом) более эффективной, чем сравнительно широким шлифовальным кругом;
  • объем снимаемого материала сравнительно велик и превышает возможности съема путем шлифования;
  • необходима обработка прерывистых поверхностей.

Для многих деталей действуют требования, предъявляемые как в первом, так и во втором случаях, поэтому сочетание на одном станке шлифования с твердым точением увеличивает его гибкость и позволяет оптимизировать каждую операцию.

Конструктивные особенности станков

Анализ представленных в таблице 1 станков свидетельствует, что подавляющее их большинство имеет вертикальную компоновку, которая для сравнительно коротких деталей (с диаметром больше длины), обычно подвергаемых точению и шлифованию, оказалась эффективнее горизонтальной. Обработка достаточно длинных валов (от 600 мм у мод. HSC250DS фирмы Emag до 1400 мм у мод. G250 фирмы Index) остается исключением и осуществляется лишь у станков горизонтальной компоновки. Кроме того, большинство станков с целью повышения их эффективности оснащено конвейерами для подачи заготовок и удаления из рабочей зоны готовых деталей. Одним из средств увеличения жесткости станков, подвергаемых при комбинированной обработке повышенным нагрузкам, является применение (у станков фирм Emag, Schaudt BWF Mikrosa и некоторых других) полимербетонных станин, обладающих хорошими демпфирующими свойствами, а также (у станков фирмы Buderus) станин из натурального гранита.

Почти все станки в стандартном исполнении снабжены более чем одним шлифовальным шпинделем, с тем, чтобы иметь возможность осуществлять как наружную, так и внутреннюю обработку. При этом механизм правки встроен непосредственно в станок. Отметим, что почти все фирмы предлагают в качестве опций линейные двигатели, причем не только по продольной оси, по которой происходит максимальное перемещение, но и по поперечной. Это означает возможность дальнейшего повышения производительности таких станков.

Разумеется, фирмы, выпускающие токарные станки, например Emag и Index, и фирмы — производители шлифовальных станков, например Junker, при общей цели — обеспечение высокой гибкости, производительности и эффективности обработки при выборе подхода к конструкции своего оборудования, в котором твердое точение сочетается со шлифованием или нао­борот, — руководствуются различны­ми соображениями. Как правило, эту конструкцию делают такой, чтобы на станке кроме точения и шлифова­ния была возможность выполнения в случае необходимости и других опе­раций.
Так, станок мод. V300 фирмы Index перевернутой компоновки с вертикаль­ным шпинделем (по образцу фирмы Emag) рассчитан на обработку широко­го ассортимента заготовок любого ти­па (отливок, поковок и т. д.). Их загруз­ка и разгрузка производится автомати­чески. Благодаря модульной конструк­ции, станок, который оснащают боль­шим количеством комбинируемых в любом порядке инструментальных го­ловок и блоков (рис. 3), предназначен­ных для выполнения различных опера­ций точения, сверления и шлифования, может работать как в мелко-, так и в среднесерийном производстве. В процессе обработки шпиндель перемеща­ет заготовку, подводя ее к различным установленным на станине инструмен­тальным блокам, которые и осуществ­ляют заданные операции точения, сверления, наружного и внутреннего шлифования. Для выполнения комби­нированного твердого точения и шлифования на станине монтируется револьверная головка с неподвижными и вращающимися инструментами. В блоке наружного шлифования используют шлифовальные круги диаметром 400 мм и шириной 40 мм из традиционных и сверхтвердых материалов, например КНБ, вращающиеся с частотой до 6000 мин -1 от привода мощностью 7,5 кВт. Их правка осуществляется автоматически. В блок встроена электромагнитная система балансировки шлифовального круга. Внутреннее шлифование осуществляется кругами из таких же материалов, но установленными на оправках с конусом HSK32 для получения максимальной точности и жесткости шлифовального шпинделя. Высокочастотный шпиндель для их вращения имеет мощность от 2 до 15 кВт и рассчитан на частоту вращения в пределах 45000-100000 мин -1 . Дополнительные операции на этом станке могут быть выполнены посредством диодного лазера, встроенного в производственный процесс для выполнения на зажатой в патроне шпинделя заготовке закалки наружных поверхностей, а также торцов и отдельных участков на внутренних поверхностях. Дополнительной операцией является также раскатывание, выполняемое на станке мод. CNC 435 фирмы Buderus.
Многофункциональные станки — наиболее успешно развивающийся в настоящее время, причем во многих аспектах, тип оборудования для лезвийной обработки — не являются чем- то особенно новым для абразивной. С помощью шлифовальных кругов, встраиваемых, например, в магазины некоторых фрезерных обрабатывающих центров, давно уже выполняют получистовую и чистовую обработку сложных поверхностей деталей из труднообрабатываемых материалов, например турбинных лопаток. Основные технологические преимущества таких центров — уменьшение количества необходимого оборудования и, соответственно, требуемых производственных площадей и числа операторов, возможность передачи готовых деталей непосредственно на сборку — сохраняются и для многофункциональных станков на базе шлифовальных. Однако у этого оборудования для комбинированной шлифовальной и токарной обработки существует ряд отличий и преимуществ. Следует отметить, в частности, существенное преобладание у него шлифовальных операций над токарными, фрезерными и сверлильными, обязательное охлаждение рабочей зоны, наличие при шлифовании в некоторых случаях механизма смены кругов. Как преимущество необходимо рассматривать и то, что при выполнении на шлифовальных станках токарных, фрезерных, резьбонарезных и других лезвийных операций достигается большая точность, чем при их выполнении на токарных и/или фрезерных, потому что в шлифовальных станках, превращаемых в многофункциональные, изначально заложена более высокая точность чем, например, в токарных, которым придают возможность шлифования. Такие станки выпускают швейцарская фирма Magerle и немецкая Junker.
Модульный станок MMS (рис. 4), впервые показанный фирмой Magerle на выставке ЕМО2003, имеет симметричную портальную конструкцию, которая вместе с шариковыми винтовыми передачами по осям координат обеспечивает его статическую и динамическую жесткость и термостабильность. Перемещения по трем осям координат (500x250x200 мм) посредством этих передач выполняет стол, что позволяет устанавливать на станке горизонтальные, вертикальные или наклонные шлифовальные головки и производить его ручную или автоматическую загрузку с четырех сторон. На выставке, в частности, был показан вариант станка с вертикальным мотор-шпинделем мощностью 30 кВт и встроенным устройством смены инструмента (пяти шлифовальных кругов диаметром 300 мм, шириной 60 мм и массой не более 20 кг или 20 кругов диаметром не более 130 мм), производимой за 3 секунды. Частота вращения кругов рекомендуется в пределах 1000-8000 мин -1 . В конусе HSK-A-100 шпинделя могут быть установлены также фрезы, сверла и другой лезвийный инструмент, что при комбинации с двухкоординатной делительной головкой и устройством смены спутников позволяет обрабатывать небольшие лопасти насосов, турбинные лопатки и другие сложные детали. Этому способствует и возможность подачи СОЖ через центр шпинделя под давлением 80 бар.
Опытный образец многофункционального станка Concept, который также впервые показала на этой выставке итальянская фирма Tacchella Macchine, представляет собой сочетание обычного круглошлифовального станка с восьмипозиционной револьверной головкой, в которой установлены неподвижные инструменты. Выполненные из КНБ два круга большого диаметра развернуты на станке относительно друг друга на 180 градусов и могут по очереди поворачиваться в рабочую зону. Станина станка выполнена в виде жесткой оребренной чугунной отливки. Перемещения по осям X и Z могут быть выполнены посредством линейных двигателей или шариковых винтовых передач. Для перемещения рабочих органов служат гидростатические направляющие. К числу недостатков этого станка можно отнести то, что у него не разделены между собой рабочие зоны точения и шлифования. В дальнейшем в револьверной головке будут, по-видимому, установлены и вращающиеся инструменты, что расширит технологические возможности станка, а число револьверных головок может быть увеличено до двух.
На станке Hardpoint серии 300 модульной конструкции фирмы Junker с наклонной станиной закаленные и незакаленные детали типа тел вращения диаметром 80 мм и такой же длины (рис. 5) кроме шлифования и хонингования кругами и головками из КНБ можно за один установ выполнять точение, сверление и развертывание, а также нарезать резьбу и удалять заусенцы. Станок реализован в четырех вариантах с числом шпинделей от двух до четырех, в которых одновременно можно обрабатывать до четырех деталей с передачей или без передачи из одного шпинделя в другой. Управление станком производится по шести осям координат от устройства ЧПУ Sinumerik 840D. Станок можно загружать вручную или автоматически.

Высокой производительности станка мод. CNC235 фирмы Buderus Scheiftechnik (рис. 6) добиваются путем установки на нем двух шпинделей, позволяющих выполнять наружное и внутреннее шлифование (специальными головками) и твердое точение (отдельными резцами или револьверной головкой) заготовок диаметром и длиной до 150 мм, а также ленточного конвейера.

Многофункциональные станки, предназначенные для твердого точения и шлифования термообработанных заготовок, пользуются достаточно высоким спросом у потребителей за рубежом и постепенно начинают проникать в Россию. Имеются сведения об установке одного такого станка (фирмы Buderus) на заводе «Волгобурмаш». Два станка мод. Stratos М было поставлено в 2004 году на ВАЗ. В то же время в Европе, США и Юго-Восточной Азии работают уже 60 таких станков. Причина столь резкой разницы заключается в недостаточном уровне развития большинства отраслей нашей промышленности и недостаточной эффективности такого сложного и дорогого оборудования в наших экономических условиях, а, следовательно, и минимального спроса на него. Поэтому в ближайшее время на российских заводах не следует ожидать появления большого количества станков для сухого точения и шлифования, разве что на отдельных предприятиях автомобильной промышленности и нескольких предприятиях, выпускающих оборудование для нефтегазовой промышленности.

Владимир Потапов
Журнал «Оборудование: рынок, предложение, цены», № 07, июль 2004 г.

С целью улучшения качества поверхности или повышения точности деталей на токарных станках могут выполняться следующие отделочные операции: полирование абразивной шкуркой, притирка (доводка) поверхностей, обкатка наружных поверхностей и раскатка отверстий роликами или шариками, а также накатка.

Полирование абразивной шкуркой применяется для получения чистой поверхности у деталей невысокой точности. Абразивные шкурки с крупными зернами (№ 6, 5 и 4) применяются для зачистки грубых необработанных поверхностей. Шкурки со средними зернами (№3 и 2) используются для полирования поверхностей с обработкой V4. Полирование шкурками с мелкими зернами (№ 1 и 0) обеспечивает получение поверхности с чистотой V 5, V 6. И, наконец, полирование шкурками с очень малым зерном (шкурки № 00 и №000) позволяет получить поверхности с чистотой V 7, V 8 и даже V 9.

При полировании станок включается на средние или максимальные обороты (в зависимости от диаметра изделия), шкурка тремя пальцами прижимается к обрабатываемой по­верхности и медленно перемещается вперед и назад вдоль изделия. Полоску шкурки можно также удерживать в натянутом состоянии за концы двумя руками и, прижимая ее к изделию, производить полирование. При обработке изделий небольшого диаметра используются жимки - приспособление, состоящее из двух деревянных брусков, шарнирно связанных между собой. Бруски имеют впадины, соответствующие диаметру обрабатываемого изделия. В углубления жимка вкладывается абразивная шкурка или наносится абразивный порошок, смешанный с маслом. При полировании жимок сжимается левой рукой и перемещается вдоль изделия.

Полирование желательно вести с использованием смазочно-охлаждающей жидкости. Окончательное полирование выполняется шкуркой, натертой мелом.

Притирка (доводка) поверхностей служит для окончательной отделки поверхностей после тонкой обточки, расточки, шлифования или развертывания. При помощи притирки можно достигнуть 1-го класса точности и чистоты поверхности по Vl2-Vl3. Притирка наружных цилиндрических поверхностей производится притирами, имеющими форму разрезной втулки. Внутренний диаметр притира должен быть больше диаметра изделия на 0,15 мм при черновой обработке и на 0,05 мм - при чистовой. Толщина стенок при­тира должна быть от 1/6 до 1/8 его диаметра. Притир изготовляется из чугуна для обработки закаленной стали и из бронзы, латуни или меди для остальных металлов и сплавов.

Втулка-притир шаржируется изнутри мелким абразивным порошком, смешанным с маслом, или покрывается доводочной пастой ГОИ. Притир вставляется в металлический жимок и надевается на деталь. Болтом обеспечивается небольшое равномерное прижатие притира и детали. Притирка выполняется при скорости вращательного движения 10-20 м/мин с медленным возвратно-поступательным движением притира вдоль детали. Припуск на притирку устанавливается в размере 0,015 мм для деталей диаметром 10-20 мм и 0,025 мм для диаметров 20 - 75 мм.

Схема притирки отверстия. Втулка-притир надевается на конусную оправку, закрепляемую в патроне. Конусность оправки принимается равной 1/30. Наружная поверхность притира покрывается абразивным порошком, смешанным с маслом или пастой ГОИ. Деталь надевается на притир с легким усилием. Для обеспечения правильной формы отверстия длина притира должна быть больше длины отверстия.

Накатывание рифлений. Рифления, наносимые на детали приборов, приспособлений, инструментов, бывают прямыми или перекрестными. Они выполняются путем накаты­вания специальными роликами, закрепленными в державке. Для прямых рифлений используется один ролик соответствующего шага, для перекрестных рифлений применяется державка с двумя роликами, расположенными точно один над другим. На цилиндрической поверхности роликов нанесены зубчики определенного шага, величина которого зависит от диаметра изделия. При прямом рифлении зубчики расположены параллельно оси ролика, при перекрестном - наклонной имеют встречное направление.

Державка с роликами устанавливается в резцедержатель по линии центров, перпендикулярно к оси изделия. Поперечной подачей с усилием ролик вдавливается в поверхность вращающегося изделия. После нескольких оборотов проверяется попадание зубчиков ролика в сделанные им насечки и затем включается механическая продольная подача. Накатка выполняется за 4 - 8 проходов на деталях из стали и за 6- 10 проходов - на деталях из цветных металлов. Окружная скорость детали составляет 10-25 м/мин для стали и 50-100 м/мин для цветных металлов. Накатывание ведется со смазкой машинным или веретенным маслом. Насечка роликов периодически очищается от налипших частичек металла.

Наиболее широко распространенными приспособлениями для токарных и шлифовальных работ являются центры, кулачковые и цанговые патроны , которые применяют также и при других работах (например, сверлильных).

На рис. 122 показаны конструкции центров токарного станка: нормальные (рис. 122, α), со сферическим концом (рис. 122, б), применяемые при смещении осевой линии заготовки относительно линии центров станка, полуцентры (рис. 122, в), позволяющие совмещать наружное продольное точение и подрезку торцов. Для повышения износостойкости центров их армируют твердым сплавом или металлизируют поверхность конуса.

Из-за нагрева в процессе резания, вызывающего удлинение обрабатываемой заготовки, изменяется сила зажима. Для того чтобы зажимная сила была постоянна, в задней бабке располагают компенсаторы различных конструкций: пружинные, пневматические и гидравлические, которые позволяют несколько смещать пиноль при нагреве заготовки. Такие компенсаторы обычно используют при закреплении заготовки во вращающихся центрах.

Чтобы предотвратить прогиб нежестких заготовок валов, в качестве дополнительных опор применяют люнеты подвижного или неподвижного типа. Обычные конструкции неподвижных универсальных люнетов не отвечают требованиям скоростной обработки, так как кулачки люнета, изготовленные из бронзы или чугуна, быстро изнашиваются и в их сопряжении с деталью образуется зазор, что приводит к вибрациям. В. К. Семинский предложил модернизировать люнет (рис. 123).

В основании 1 люнета вместо кулачков 7 устанавливают шарикоподшипники, а гнездо под кулачок в крышке 2 растачивают и вставляют в него стержень 4 с пружиной 5. На стержне закреплена серьга 6 с двумя шарикоподшипниками. Шарикоподшипники основания люнета настраивают на диаметр по контрольному валику, устанавливаемому в центрах, или по самой обрабатываемой заготовке.

Затем накидывают крышку 2 люнета и гайкой 3 регулируют положение стержня 4 с таким расчетом, чтобы зазор между основанием и крышкой составлял 3…5 мм , после этого эксцентриком 8 прижимают крышку. При этом пружина 5 сжимается и шарикоподшипники, установленные в серьге, с силой начинают прижимать обрабатываемую деталь к шарикоподшипникам основания.

Биение из-за овальности и неодинаковой толщины различных участков обрабатываемой заготовки при данной конструкции люнета воспринимается пружиной 5, которая работает как амортизатор.

Наиболее распространенными устройствами передачи крутящего момента обрабатываемым заготовкам на шпинделе передней бабки являются поводковые устройства : хомутики, скобы, поводковые оправки, поводковые планшайбы, поводковые патроны, кулачковые патроны, цанговые зажимные устройства.

Обычные и самозажимные хомутики имеют ограниченное применение, так как требуют значительного времени для установки, поэтому чаще применяют самозажимные поводковые оправки. Устанавливать и снимать заготовки в этом случае можно при вращении шпинделя. Установленную в центрах заготовку перемещают влево поджимом пиноли, задней бабки, при этом в торец заготовки вдавливают зубья поводка, что обеспечивает передачу крутящего момента от шпинделя к заготовке.

Из патронов, применяющихся для установки и закрепления заготовок на токарных станках, наиболее распространены самоцентрирующие трехкулачковые патроны. Для закрепления несимметричных заготовок применяют обычно четырехкулачковые патроны с независимым перемещением каждого кулачка с помощью винта.

При базировании обрабатываемой заготовки по внутренней поверхности применяют разжимные оправки с пневматическим приводом. Наиболее характерной конструкцией пневматического поводкового патрона является патрон, показанный на рис, 124. В этой конструкции устанавливать и снимать заготовку можно не останавливая шпиндель станка. Патрон снабжен автоматически запирающимся плавающим центром. В отверстиях корпуса приспособления установлены плунжеры 7, в пазах которых находятся зубчатые колеса 5, вращающиеся на запрессованных в плунжеры 7 осях 6. Зубчатые колеса 5 находятся в зацеплении с реечными клиньями 8, которые своими скосами с помощью крестообразных вкладышей 4, находящихся в пазах колодок 3, перемещают колодки с эксцентриковыми кулачками зажимаемой заготовке. Кулачки 1 вращаются на осях 2, закрепленных в колодках 3. В середине патрона находится втулка 14 с плавающим патроном 16, жестко связанным с корпусом патрона. Головка 10 связана со штоком пневматического цилиндра качалки 9.

При зажиме головка 10 толкает плунжеры 7 и подает вперед втулку 15, сидящую на втулке 14. Кулачки 1 пружинными плунжерами 11 прижимаются к упорным винтам 12, которые обеспечивают касание средней части поверхности кулачка и зажимаемой заготовки. При упирании кулачков 1 в обрабатываемую заготовку зубчатые колеса 5, перекатываясь по зубьям реечных клиньев 8, перемещают втулку 15, которая своим корпусом и тремя шариками зажимает центр 16. Колодки 3 с кулачками 1 в нерабочем состоянии удерживаются пружинными плунжерами 13 на одинаковом расстоянии от центра патрона.

На рис. 125 приведена конструкция задней бабки токарного станка с встроенным вращающимся центром и пневматическим цилиндром для перемещения пиноли. Это устройство позволяет уменьшить затраты времени на перемещение пиноли. Пиноль 2 перемещается с вращающимся центром 1 посредством штока 3 и поршня 5 пневмоцилиндра 4. Когда сжатый воздух поступает в правую полость цилиндра, поршень, перемещаясь влево, толкает штоком пиноль к обрабатываемой заготовке.

Пневмоцилиндр 4 жестко закреплен на корпусе задней бабки. С помощью распределительного крана 6 осуществляют управление приводом.

Для обработки заготовок на токарных станках применяют пневматические трехкулачковые патроны с регулируемыми кулачками. Применение регулируемых кулачков обусловлено необходимостью обработки заготовок различных размеров. Частые перестановки кулачков (или накладок) вызывают необходимость их протачивать или шлифовать, что, естественно, затрудняет переналадку, особенно в течение рабочего дня. Показанная на рис. 126 конструкция позволяет не только регулировать кулачки в зависимости от формы заготовки или ее размеров, но и быстро переналаживать патрон для работы в. центрах. В корпусе 2 патрона находится муфта 1, соединенная резьбой с тягой пневматического привода. В проточку муфты входят длинные концы трех рычагов 3, а их короткие концы - в пазы ползушек 4, соединенных винтами 5 с кулачками 6. На торцевую поверхность патрона нанесена кольцевая риска 7, а на кулачках имеются деления, позволяющие предварительно устанавливать кулачки. При переналадке патрона для работ в центрах в центральное отверстие вставляют переходную втулку с нормальным центром, а один из кулачков используют в качестве поводка.

В некоторых случаях обрабатываемые заготовки с буртиками или фланцами целесообразно центрировать на коротких жестких пальцах или в выточках и зажимать вдоль оси. На рис. 127 показана конструкция пневматического приспособления для осевого зажима тонкостенной втулки с буртиком. Втулку центрируют в выточке диска 7, прикрепленного к корпусу 1, и зажимают вдоль оси тремя рычагами 6, посаженными на оси 5. Рычаги приводят в действие тягой, соединенной с винтом 2, при перемещении которой передвигается коромыслом 4 вместе с рычагами 6, зажимающими обрабатываемую заготовку. При движении тяги слева направо винт 2 посредством гайки 3 перемещает в сторону коромысло 4 с рычагами 6. Пальцы, на которые посажены рычаги 6, скользят по косым пазам диска 7 и таким образом при раскреплении обработанной заготовки несколько приподнимаются (как показано тонкой линией), позволяя освободить обработанную деталь и установить новую заготовку.

Закрепление по буртику позволяет обрабатывать как наружные, так и внутренние поверхности.

На предприятиях применяют также пневматические устройства со сменными зажимными рычагами, обеспечивающими концентричность наружной и внутренней обрабатываемых поверхностей. Конструкция такого приспособления приведена на рис. 128 и представляет собой корпус 5, внутри которого на шарнирных осях установлены рычаги 2 и 4. Короткие концы рычагов выступают наружу, а длинные установлены в прямоугольном пазу штока 3. В резьбовое отверстие штока ввернута тяга 1, соединенная со штоком пневмоцилиндра (на рисунке не показан). Корпус приспособления центрируется на планшайбе 7 станка втулкой 6.

При движении тяги 1 со штоком 3 справа налево короткие концы рычагов 2 и 4 зажимают заготовку.

Применяют также патроны с установкой заготовок по обработанным базам. На рис. 129 показана конструкция патрона с установкой заготовки по центральному отверстию и зажимом за фланец. При креплении кулачки 3, сидящие на концах штоков 1, своими выступами опираются на планку 2, разгружая штоки от изгибающих сил. При раскреплении обработанной детали кулачки 3 нижними наружными выступами 4 упираются в планку 2, освобождая деталь, а внутренними выступами 5 сталкивают ее с установочного пальца.

Для обработки на оправках применяют различные виды разжимных пневматических устройств. На рис. 130 показана конструкция трех кулачковой разжимной оправки. Она состоит из корпуса 2 с чугунной резьбовой втулкой 3, навинченной на шпиндель станка. Заготовку зажимают тремя кулачками 4, расположенными под углом 120° в отверстиях корпуса оправки и выдвигаемыми с помощью втулки 5 с тремя клиньями. Втулка перемещается тягой 1 от пневматического привода. Кулачки 4 возвращаются в исходное положение при освобождении обработанной детали пружинными кольцами 6.

Основным недостатком размещения пневматического привода на заднем конце шпинделя является невозможность обработки прутковых заготовок. На рис. 131 показана конструкция пневматического цангового патрона, который позволяет обрабатывать заготовки из прутка, проходящего через отверстия шпинделя станка. В данной конструкции сжатый воздух поступает через распределительную коробку, укрепленную на заднем конце шпинделя станка. Воздуховод от распределительной коробки к патрону расположен в двух металлических трубках 1, впаянных в канавки трубы 2.

При зажиме заготовки сжатый воздух направляется в правую полость патрона, перемещая поршень 3 с привернутым в нему кольцом 5. Это кольцо, надавливая на кулачки 6, перемещает их по конической поверхности втулки 4, зажимая тем самым заготовку. Для раскрепления обработанной детали сжатый воздух направляется в левую полость патрона, сдвигая поршень 3 вправо, при этом кулачки 6 под воздействием пружинного кольца 7 расходятся.

Когда по условиям чертежа требуется получить гладкую и блестящую зеркальную поверхность детали, но точность размеров может быть грубой, применяют полирование этой поверхности; если же, помимо чистоты и блеска, требуется получить точные размеры детали, применяют доводку или притирку.

1. Полирование

Полирование производится на токарных станках при помощи наждачной шкурки . В зависимости от размера зерен наждака различают следующие номера шкурки: № 6, 5 и 4 - с крупными зернами наждака № 3 и 2 - со средними, № 1, 0, 00 и 000 - с мелкими. Самое чистое полирование дает шкурка № 00 и 000. Наждачную шкурку нужно держать так, как показано на рис. 232, а, иначе она может намотаться на деталь и защемить пальцы.

Полирование производится значительно быстрее при помощи простого приспособления, называемого жимками (рис. 232, б). Жимки состоят из двух деревянных брусков, соединенных с одного конца кожаным или металлическим шарниром и имеющих углубления по форме детали. В жимки закладывают наждачную шкурку или засыпают наждачный порошок. Рекомендуется смазать полируемую поверхность машинным маслом или смешать с маслом порошок, тогда поверхность получается более блестящей.

Применение жимков устраняет опасность повреждения рук токаря и захвата рукава вращающейся деталью, хомутиком или патроном.

Полирование ведут при легком нажиме жимков и больших числах оборотов обрабатываемой детали.

2. Доводка или притирка

Доводка или притирка применяется для окончательной обработки наружных и внутренних цилиндрических и конических, фасонных и плоских поверхностей деталей с целью получить точные размеры и высокое качество (чистоту) поверхности или герметичность соединения.

Этот метод обработки получил широкое распространение в инструментальном производстве (доводка режущих кромок твердосплавных резцов и разверток; доводка калибров цилиндрических, конических, резьбовых; доводка измерительных плиток).

Этот метод обработки широко применяется также и в машиностроении, например, доводка шеек коленчатых валов, плунжеров форсунок, зубьев колес и т. д. Чистоту поверности после доводки можно получить от 10 до 14.

Доводка наружных цилиндрических поверхностей производится чугунными, медными, бронзовыми или свинцовыми втулками (притирами), выточенными по размеру обрабатываемой детали. С одной стороны втулка разрезана, как показано на рис. 233.

Втулку 1 смазывают изнутри ровным тонким слоем корундового микропорошка с маслом или доводочной пастой. Затем ее вставляют в металлический жимок 2 и надевают на деталь. Слегка подтягивая жимок болтом 3, равномерно водят притир вдоль вращающейся детали. При доводке полезно смазывать деталь жидким машинным маслом или керосином.

Припуск на доводку оставляют порядка 5-20 мк (0,005- 0,020 мм) на диаметр.

Скорость вращения детали при доводке - от 10 до 20 м/мин; чем чище должна быть обработанная поверхность, тем ниже должна быть скорость.

Доводка отверстий производится чугунными или медными втулками (притирами), также разрезанными с одной стороны. Втулки устанавливают на точный размер при помощи пологих конических оправок, на которые они насаживаются. На рис. 234 показана втулка 1, насаженная на коническую оправку 2, закрепленную в самоцентрирующем патроне. Для доводки деталь надевают на втулку 1, которая во время доводки вращается с оправкой 2; при этом детали сообщают медленное прямолинейно-возвратное движение по втулке.

Доводку наружных и внутренних поверхностей производят корундовым микропорошком, смешанным с маслом, или специальными доводочными пастами ГОИ. Эти пасты дают лучшие результаты как по качеству поверхности, так и по производительности. Они оказывают на металл не только механическое, но и химическое действие. Последнее состоит в том, что благодаря пасте на поверхности детали образуется тончайшая пленка окислов, которая легко затем снимается.

3. Накатывание

Цилиндрические рукоятки различных измерительных инструментов, рукоятки калибров, головки микрометрических винтов и круглые гайки делают не гладкими, а рифлеными, чтобы удобнее было пользоваться ими. Такая рифленая поверхность называется накаткой , а процесс ее получения - накатыванием . Накатка бывает прямой и перекрестной.

Для накатывания в резцедержателе суппорта станка закрепляют особую державку 1 (рис. 235), в которой установлены для простой накатки один, а для перекрестной - два ролика 2 и 3 из инструментальной закаленной стали с нанесенными на них зубчиками.

Зубчики на роликах имеют различные размеры и по-разному направлены (рис. 236), что позволяет получить накатку различных узоров.

При накатывании державку прижимают к вращающейся детали. Ролики вращаются и, вдавливаясь в материал детали, образуют на ее поверхности накатку. Она может быть крупной, средней или мелкой в зависимости от размеров зубчиков на роликах.

При накатывании производят подачу в двух направлениях - перпендикулярно к оси детали и вдоль оси. Для получения достаточной глубины накатки можно вести накатывание в 2-4 прохода.

Правила накатывания : 1) начиная накатывание, следует дать сразу сильный нажим и проерить, попадают ли зубчики ролика при следующих оборотах в сделанные ими насечки;
2) ролики должны соответствовать требуемому узору детали;
3) двойные ролики должны быть точно расположены один под другим;
4) перед работой ролики нужно тщательно очистить проволочной щеткой от остатков материала;
5) во время накатывания рабочие поверхности роликов следует хорошо смазывать веретенным или машинным маслом.

Режимы накатывания . В табл. 10 и 11 указаны окружные скорости и продольные подачи при накатывании на токарных станках.

Таблица 10

Окружные скорости при накатывании


Таблица 11

Подачи при накатывании

Проверку правильности накатки производят на глаз.

4. Обкатывание поверхности роликом

Для упрочнения поверхностного слоя детали, предварительно обработанной, например, чистовым точением применяют обкатывание цилиндрической поверхности закаленным роликом с полированной поверхностью.

Обкатываемой детали сообщают вращательное движение со скоростью 25-50 м/мин, а державке с роликом - движение продольной подачи. Величина подачи 0,2-0,5 мм/об - в зависимости от требуемой чистоты поверхности. Обкатывание ведут с небольшим нажимом ролика на обкатываемую поверхность. Число проходов ролика 2-3. Для уменьшения износа ролика применяют обильную смазку поверхностей ролика и детали веретенным или машинным маслом, смешанным в равных количествах с керосином.

Контрольные вопросы 1. Как производится полирование поверхности?
2. Какие материалы применяют при полировании поверхностей?
3. Чем отличается доводка от полирования?
4. Каким инструментом производится накатывание поверхности?
5. Как производят обкатывание поверхности роликом?

Полировка представляет собой отделочную обработку, при которой в основном происходит пластическая деформация - сглаживание поверхностных неровностей, а собственно съем (срезание) металла или вовсе не имеет места или он очень мал и распространяется только на поверхностные неровности.

В результате полировки повышается чистота поверхности, достигая зеркального блеска.

Основное применение полировки - декоративная обработка для придания блеска поверхности. Кроме того, полировка применяется для уменьшения коэффициента трения, повышения коррозионной стойкости, повышения усталостной прочности, уменьшения аэродинамического трения.

Наиболее распространенным в машиностроении видом полировки является полировка посредством мягких кругов, на цилиндрическую поверхность которых нанесена смесь абразивного порошка и смазки. Применяют круги: войлочные из коровьей шерсти и матерчатые из парусины - для более грубой полировки; фетровые и матерчатые из хлопчатобумажной ткани - для тонкой полировки; кожаные - для деталей, у которых надо сохранить острые кромки. полировка плоских изделий производится бесконечными кожанными лентами, натянутыми на пару шкивов; полировка червяков - деревянными зубчатыми колесами. Для полировки применяют: наждачные и электрокорундовые микропорошки зернистости М28 - М14 - для полировки стали; окись хрома - для цветных металлов и сплавов; крокус и венскую известь - для особо тонкой полировки. Смазка должна быть достаточно густой, чтобы удерживать абразивные зерна на поверхности быстро вращающихся кругов. Применяют тавот и смеси парафина и воска, наносимые на круги в разогретом состоянии. Примерная пропорция: смазки 40% и абразива 60% (по весу). Окружная скорость полировальных кругов составляет обычно 20-35 м/сек. Давление, с которым обрабатываемое изделие прижимается к кругу, имеет большое значение: чем оно больше, тем выше производительность, но тем ниже чистота поверхности и тем больше нагревание полируемого изделия.

Ручная полировка производится на простейших полировальных станках. В массовом производстве применяются специальные станки с механической подачей изделий.

К полировке обычно относят и такой - промежуточный между шлифованием и полировкой - метод обработки, при котором абразивный порошок наклеивают на поверхность войлочного круга. Для этого поверхность круга покрывают горячим столярным клеем, и круг прокатывают по плоскости, на которой тонким слоем насыпан абразивный порошок. Толщина слоя полученной таким способом абразивно-клеевой пленки может доходить до 2-3мм. В последнее время проведены успешные опыты наклейка абразива посредством синтетического клея БФ-2, что позволило применять водяное охлаждение для предохранения обрабатываемых закаленных деталей от возможного отпуска. Этот метод обработки позволяет полировать (точнее - шлифовать) поверхности, имеющие небольшую выпуклость или вогнутость. Чистота обрабатываемой поверхности получается 7-9-го классов, в зависимости от зернистости применяемого абразива - от 60 до 180.

К полировке относится и отделка поверхности абразивной шкуркой и лентой (без применения контактных роликов). Помимо общеизвестной полировки шкуркой на токарных станках, в массовом производстве применяется полировка абразивной лентой на специальных станках.

Разновидностью полировки является жидкостная полировка (называемая иногда «гидро-хонингом» или жидкостным хонингованием).

Сущность этого метода заключается в том, что на обрабатываемую поверхность под давлением до 6 атм. направляется струя жидкости, представляющей собой смесь масла или эмульсии с абразивным порошком - карборундом или электрокорундом. Достигаемая чистота поверхности: от 7-го класса при зернистости абразива 80 до 9-го класса - при зернистости М20.

Жидкостная полировка позволяет обрабатывать изделия сложной формы с глубокими впадинами, с уступами и т.п., т.е. таких деталей, полировка которых кругами затруднительна. Для жидкостной полировки необходима специальная установка. На Рис.1. показана опытная заводская установка основанная на пневмо-эжекционном принципе подачи абразивной жидкости.

Рис.1. Установка для жидкостной полировки: 1-ребристый резервуар для абразивной жидкости; 2-лопастной винт; 3-вал мешалки; 4-обрабатываемая деталь; 5-форсунка.