Как сделать лазер в домашних условиях: технология. Резак лазерный по металлу – как это работает, возможно ли самостоятельное изготовление? Ручной лазерный резак

Инструкция

На первом этапе, Вам нужно извлечь лазерный диод из двд. Это долгий и кропотливый процесс. Когда Вы вскроете двд, Вы без труда найдёте каретку, которая двигается по двум направляющим. Раскручивать каретку нужно аккуратно. У Вас на пути будет множество шурупов, снимать их нужно без спешки, так как лазерный диод не терпит тряски и ударов. Когда Вы извлечёте его из корпуса каретки, держите его аккуратно и бережно.

Второй этап, это замена в лазерной указке её родного диода, на извлечённый из привода. Это необходимо, чтобы сделать лазер мощнее. Дело в том, что внутри указки маломощный лазерный диод, тогда как в двд лазер классом выше. Лазерную указку получиться раскрутить на две части. Диод установлен в верхней. Вам нужно достать родной диод и излучатель.После этого в корпус верхней части нужно установить диод из двд. Лучше всего посадить его на клеевую основу.

На третьем этапе, нужно поместить усовершенствованную верхнюю часть указки в фонарик с подходящим корпусом. Верхняя часть фонарика будет служить заменой удалённому из указки рассеивателю. Питание диода нужно подвести к батарейкам фонарика, таким образом, Вы запитаете лазер. Стекло из фонарика нужно удалить, так как оно встанет на пути луча лазера.

Проверьте прочность установки лазера, полярность и соединения питания, наличие батареек и плотность скрепления частей фонаря. Теперь всё готово и ваш лазер может зажечь спичку, прожечь полиэтилен или бумагу.

Связанная статья

Источники:

  • как сделать лазер своими руками

Настоящий мощный лазер, способный прожигать и разрезать различные поверхности – это не фантастика и не дорогое устройство, а приспособление, которое вы можете создать в домашних условиях, имея небольшие навыки работы с инструментами.

Вам понадобится

  • кусок от коробочки от компакт-диска,
  • флуоресцентный краситель по текстилю,
  • светодиоды,
  • ацетон,
  • лазерная указка,
  • аккумуляторы GP.

Инструкция

Налейте в прозрачную чистую емкость ацетон и, разломав от футляра на кусочки, поместите его в ацетон. Дождитесь растворения , после чего слейте ацетон и залейте новым ацетоном. Перемешайте массу и снова слейте ацетон. Заливайте пластик свежим ацетоном до тех пор, пока он не очистится полностью от примесей.

Из емкости с растворенным пластиком вылейте ацетон и влейте в пластик отфильтрованный краситель. Перемешайте пластик, слейте краситель, а затем приготовьте и отфильтруйте новый, чтобы снова залить пластик. Оставьте растворенный пластик в красителе на несколько дней. Через несколько дней, когда пластик станет темно-красным и прозрачным, слейте жидкость и залейте свежий краситель.

Для пластика заготовьте форму, в которой он приобретет цилиндрическую форму диаметром 4 мм и длиной 5 см. Вылейте в форму краситель, промойте ее и слейте краситель. Затем налейте краситель снова и залейте в форму окрашенный пластик. Снова залейте краситель поверх пластика и закройте поверхность формы, чтобы ацетон не испарялся из красителя. В течение недели не трогайте форму, а затем долейте чистый ацетон, заменив на него краситель. Открытую форму аккуратно поставьте в морозильную камеру.

Через трое суток, когда пластик засохнет, сломайте форму и очистите от нее пластиковую . Неровности на поверхности пластиковой детали исправляйте с помощью кусочка , смоченного в ацетоне и прижатого к пластиковой детали. Поместите деталь на ровную металлическую поверхность, смазав ее клеем Момент. На одном из торцов детали установите ную указку, лазер которой должен просвечивать вашу трубку насквозь.

Подготовьте мощные светодиоды с длиной волны излучения 485 НМ в десяти штук по 4 ватта каждый. Разместите сверху над пластиковой деталью , поместив их в ряд вдоль ее поверхности, и постройте схему так, чтобы сначала вы зажигали лазерную указку, а затем зажигались диоды.
Полученный лазер будет иметь мощность 20-30 ватт.

Видео по теме

Наверняка, в детстве вы играли в супершпионов, у которых всегда есть самое лучшее оружие и секретные разработки, позволяющие без труда выполнять задание. Те дети выросли, а мечта о наушниках, которые позволяют услышать, что происходит в другом конце дома, очках, которые помогают видеть сквозь стены, и лазере, разрезающим все на своем пути, осталась. Давайте попробуем собрать лазер собственными руками.

Вам понадобится

  • 1. Фонарик.
  • 2. Лазерная указка.
  • 3. Пишущий CD или DVD-привод.
  • 4. Отвертка.
  • 5. Провода.
  • 6. Резисторы.
  • 7. Элементы питания.

Инструкция

Возьмите старый пишущий CD или DVD-привод. Самый мощный у приводов фирмы Sony и LG, самый слабый – у Samsung. Можно взять и поломанный привод. Самое главное, чтобы причина поломки была не в лазере. Такие приводы можно найти на свалке. Бывшие в употреблении устройства возможно и на рынке или в магазинах, продающих б/у технику. Может быть, такой привод есть у кого-то из ваших друзей.

Аккуратно разберите привод. Постарайтесь не трясти его. Лазер приводов – устройство хрупкое. Вы увидите каретку, которая и позволяет производить запись на диск. Осторожно открутите каретку, на которой крепятся . Учтите, корпус привода и каретка крепятся большим количеством шурупов. Наберитесь терпения.

Никогда не подключайте лазерный диод напрямую к источнику питания. Так он быстро сгорит. Воспользуйтесь резисторами, сопротивление которых можно подобрать лишь опытным путем.

Лазерную указку можно вставить в корпус от фонарика, таким образом подобрав нужную мощность элемента питания. Обязательно удалите из фонарика , так как оно будет препятствием на пути лазерного луча.

Видео по теме

Обратите внимание

Сразу стоит предупредить. Лазер – вещь опасная. Ни в коем случае не направляйте его на одежду и человека. Особенно опасайтесь попадания луча лазера в глаза. При изготовлении данного лазера используйте защитные очки. Если вы сделаете лазер, установив дополнительную линзу для фокусировки, помните: чем тоньше луч лазера, тем сильнее его мощность и выше температура.

Уже на протяжении ряда лет лазеры пользуются большой популярностью. Изготовить лазер в домашних условиях вполне реально. Необходимо лишь иметь некоторые навыки работы с паяльником и отличать «+» от «-» при монтаже схемы.

Инструкция

Если вы хотите получить мощный лазер, с излучением порядка 200 мВт, то найдите подходящий DVD с рабочей и установленной на ней головкой лазера. Определите, какое свечение хотите иметь, красное или сине-фиолетовое. Луч фонаря подберите соответствующим свечением по длине волны, которая варьирует от 380 нм до 800 нм, просмотром характеристик различных излучателей. Слабое излучение можно получить извлечением того же , но из CD привода. Оба привода должны быть пишущими. Слабое излучение получите и из какого-нибудь , сканера штрих кода, .

Конструкция дисковода может быть самой разной. Внимательно разберитесь с ней, чтобы без особых проблем открутить несколько винтов. Лазерный блок крепится на направляющей каретке, которую вы легко извлечете после удаления крепежа. После этого извлеките из блока оптический элемент DVD, предварительно «усадив» все выводы на фольгу, или аккуратно обмотав тонкой проволочкой, тем самым исключив по статике. Определитесь с каждым из 3 выводов:
- 1 вывод питание «+»;
- 2 вывод питание «-»;
- 3 вывод не используется.

Питание лазерного диода составляет 3 вольта. Воспользуйтесь двумя «пальчиковыми» батарейками. Можете взять для питания и обычную крону, тогда соберите дополнительную схему стабилизатора напряжения. Такой вариант дает более долгосрочное использование вашего лазера. Найдите конденсатор 10 пф и полярный 100 мкф/16 в.
Затем по справочнику выберите стабилизатор, соответствующий напряжению 3 в, допустим, КР1158ЕН3В. Кроме этого подберите подходящий корпус и микропереключатель.

Начните весь процесс сборки с припаивания емкости к выводам лазерного диода, удалите защитную фольгу и припаяйте полярный конденсатор с учетом полярности. КРЕН-ка имеет три вывода:
- 1 стабилизированное питание +3в;
- 2 общий;
- 3 входное напряжение.
Опять же, строго учитывая полярность стабилизатора и лазерного диода, сделайте распайку этой части . Теперь в разрыв цепи питания и собранной вами схемы впаяйте микропереключатель. Проверьте собранную схему и попробуйте включить.

Аккуратно упакуйте полученное изделие и поместите его в корпус приготовленного фонарика, предварительно удалив стекло с фонарика. Сделать лазер самостоятельно вы можете и, не разбирая дисковод, а побродив по -магазинам и подобрав необходимый (или заказав) лазерный блок.

Первичным источником светового потока лазерной указки является лазерный светодиод. Он генерирует луч с длиной волны около 808 нм, который проходит сквозь линзу, потом попадает в кристалл, основу которого составляют оксиды неодима, иттрия, ванадия. В кристалле световые лучи преобразуются в волны с длиной 1064 нм. Дальше поток приобретает длину волны 532-670 нм. Пройдя через инфракрасный фильтр, поток собирается в пучок посредством линзы.

Инструкция

Чтобы сделать лазерную указку , возьмите пишущий DVD, вышедший из употребления. Если у вас есть выбор, то отдавайте предпочтение приводу с более высокой скоростью, потому что он оснащен более мощным . Приготовьте остатки самой дешевой детской лазерной указки, ее оптическую часть. С этой же целью можно использовать простейший фонарик. Купите конденсатор на 100 микрофарад – 16 вольт и конденсатор на 10 пикофарад керамический дисковый, микросхему, стабилизатор напряжения КР 1158 ЕН 3В.

Уже давно применяются в медицине, при изготовлении высокоточных приборов, в лабораторных установках и т.д. Узкий пучок когерентного электромагнитного излучения оптического диапазона уже давно привлекал исследователей со всей планеты. Свойства лазера достаточно хорошо изучены и с недавнего времени используются в народном хозяйстве и на производстве. Наверное, все видели в работе высокоточные прицелы или всем известные указки. Мощность таких приборов невелика, но ее вполне достаточно для демонстрации их

возможностей. С развитием технологии изготовления в настоящее время промышленным способом производятся небольшие по размеру элементы, способные выдавать луч достаточно большой мощности. Без сомнения, они найдут свое место в электронике. На их базе вполне можно изготовить самодельный лазер, который можно использовать в быту, предположим, в качестве малогабаритного уровнемера.

Для того чтобы изготовить самодельный лазер, нет необходимости искать дорогостоящий кристалл, конструировать устройство накачки, устанавливать отражатель и т.д. Вам даже не понадобится настраивать специальную оптическую линзу, используемую для корректировки луча. На данный момент технология изготовления лазерных диодов достаточно хорошо развита.

Такой прибор может работать с постоянной мощностью излучения до 8 Ватт, что вполне достаточно, чтобы получить луч большой протяженности. На близком расстоянии такое устройство прожжет лист бумаги. Все, что необходимо для того, чтобы собрать такой самодельный лазер - это подобрать корпус и организовать источник питания. Следует также учитывать, что во включенном состоянии такое устройство потребляет приличный ток, и обыкновенные батарейки вскоре придется менять. В качестве лучше всего использовать В зависимости от целевого назначения такого устройства можно обратиться к каталогам и подобрать диод по тем параметрам потребляемого тока и мощности излучения, которые наиболее вас устраивают.

Широко используются в самых различных электронных устройствах. Вполне можно демонтировать этот прибор из старого лазерного “резака” для DVD дисков и сделать из него самодельный лазер. Оно вполне подойдет для демонстрации возможностей этого прибора.

В настоящее время выпускаются с пиковой выходной оптической мощностью до 150 Ватт. Не забывайте о безопасности при работе с этими элементами.

Если же вы собираетесь собрать мощное устройство, способное обрабатывать легкоплавкие материалы, то тогда вам пригодится Своими руками этот прибор можно собрать на основании чертежей, которые вполне можно найти в свободном доступе.

Как видите, самодельные лазеры вполне реально сделать, не прибегая к поиску дорогостоящих и дефицитных материалов. Сборка и калибровка не отнимет много времени.

Ассортимент производимых лазерных диодов постоянно растет. Увеличивается их выходная оптическая мощность. Поточное производство приводит к постепенному уменьшению их стоимости.

При упоминании лазера большинство людей сразу вспоминают эпизоды из фантастических фильмов. Однако такое изобретение уже давно и плотно вошло в нашу жизнь и не является чем-то фантастическим. Лазер нашёл своё применение во многих сферах, начиная от медицины и производства и заканчивая развлечениями. Поэтому многим становится интересно, можно ли и как сделать лазер самому.

Изготовление лазера в домашних условиях

В зависимости от специфики и выдвигаемых требований, лазеры бывают совершенно разные, как по размерам (начиная от карманных указок и кончая габаритами с футбольное поле), так и по мощностям, используемым рабочим средам и другим параметрам. Конечно, мощный производственный луч сделать самостоятельно в домашних условиях невозможно, так как это не только технически сложные аппараты, но и очень капризные в обслуживании вещи. А вот простой, но надёжный и мощный лазер своими руками можно изваять из обычного DVD-RW привода.

Принцип работы

Слово «лазер» пришло к нам из английского языка «laser», что является сокращением из первых букв куда более сложного названия: light amplification by stimulated emission of radiation и дословно переводится как «усиление света посредством вынужденного излучения». Ещё его могут называть оптическим квантовым генератором. Видов лазеров очень много, а сфера их применения крайне обширна.

Принцип его работы заключается в преобразовании одной энергии (световой, химической, электрической) в энергию различных потоков излучения, то есть, в её основе содержится явление вынужденного или индуцированного излучения.

Условно принцип работы отображает следующий чертёж:

Необходимые для работы материалы

При описании основ работы лазера всё выглядит сложно и непонятно. На деле же сделать лазер своими руками в домашних условиях крайне просто. Понадобятся некоторые комплектующие и инструменты:

  1. Самое основное, что нужно для создания лазера, это DVD-RW дисковод, т. е. пишущий привод от компьютера или проигрывателя. Чем выше скорость записи, тем мощнее будет и само изделие. Предпочтительнее брать приводы со скоростью 22X, так как его мощность наиболее высокая, порядка 300 мВт. При этом отличаются они и по цвету: красный, зелёный, фиолетовый. Что же касается непишущих ROM’ов, они слишком слабые. Ещё стоит обратить внимание на то, что после манипуляций с приводом он больше не будет работать, поэтому стоит брать или уже вышедший из строя, но с рабочим лазером, или такой, попрощаться с которым будет не жалко.
  2. Ещё понадобится токовый стабилизатор, хотя и появляется желание обойтись без него. Но стоит знать, что все диоды (и лазерный не является исключением) «предпочитают» не напряжение, а ток. Наиболее дешёвые и предпочтительные варианты - это импульсный преобразователь NCP1529 или микросхема LM317 (аналог КР142ЕН12).
  3. Выходной резистор подбирают в зависимости от тока питания лазерного диода. Рассчитывают его по формуле: R=I/1,25, где I - номинальный ток лазера.
  4. Два конденсатора: 0,1 мкФ и 100 мкФ.
  5. Коллиматор или лазерная указка.
  6. Элементы питания стандарта ААА.
  7. Провода.
  8. Инструмент: паяльник, отвёртки, пассатижи и т. п.

Извлечение лазерного диода из DVD - привода

Основная часть, которую необходимо извлечь - лазер от dvd привода. Сделать это несложно, но стоит знать некоторые нюансы, которые помогут избежать возможных недоразумений во время работы.

Первым делом DVD привод нужно разобрать, чтобы добраться до каретки, на которой и находятся лазерные диоды. Один из них читающий - он слишком маломощный. Второй пишущий - именно то что нужно, чтобы сделать лазер из dvd привода.

На каретке диод установлен на радиатор и надёжно закреплён. Если не рассчитывается использовать другой радиатор, то вполне подойдёт и уже имеющийся. Следовательно, нужно снять их вместе. В противном случае - аккуратно отрезать ножки в месте входа в радиатор.

Так как диоды крайне чувствительны к статике, нелишним будет их защитить . Для этого тонкой проволокой нужно смотать между собой ножки лазерного диода.

Остаётся лишь собрать все детали воедино, а сам РОМ уже больше не нужен.

Сборка лазерного устройства

К преобразователю необходимо подключить извлечённый из сидирома диод, соблюдая полярность, так как в противном случае лазерный диод сразу же выйдет из строя и станет непригоден для дальнейшего использования.

С обратной стороны диода устанавливается коллиматор, чтобы свет мог концентрироваться в один пучок. Хотя вместо него можно использовать и входящую в состав рома линзу, или линзу, которую уже содержит в себе лазерная указка. Но в этом случае придётся проводить юстировку, чтобы получить необходимый фокус.

С другой стороны преобразователя припаиваются провода, соединяющиеся с контактами корпуса, где будут установлены элементы питания.

Поможет доделать лазер из двд привода своими руками схема:

Когда подключение всех составляющих выполнено, можно проверить работоспособность получившегося устройства. Если всё работает, то остаётся всю конструкцию поместить в корпус и надёжно там закрепить.

Корпус самодельной конструкции

Подойти к изготовлению корпуса можно по-разному. Отлично для этих целей подойдёт, к примеру, корпус от китайского фонарика. Можно использовать и уже готовый корпус лазерной указки. Но оптимальным решением может оказаться самодельный, из алюминиевого профиля.

Сам по себе алюминий имеет малый вес и, при этом отлично поддаётся обработке. В нём удобно расположится вся конструкция. Закрепить её тоже будет удобно. При необходимости всегда можно легко выпилить необходимый кусок или согнуть в соответствии с необходимыми параметрами.

Техника безопасности и тестирование

Когда все работы закончены, наступает время протестировать полученный мощный лазер. В помещении делать этого не рекомендуется. Поэтому лучше выйти на улицу в безлюдное место. При этом стоит помнить, что сделанное устройство в несколько сотен раз мощнее обычной лазерной указки , а это обязывает пользоваться им с особой осторожностью. Не стоит направлять луч на людей или животных, внимательно следить за тем, чтобы луч не отразился и не попал в глаза. При использовании красного луча лазера рекомендуется одевать зелёные очки, это значительно снизит риск повреждения зрения в непредвиденных случаях. Ведь даже со стороны смотреть на лазерные лучи не рекомендуется.

Не стоит направлять лазерный луч на легковоспламеняющиеся или взрывоопасные предметы и вещества.

Созданный прибор при правильно настроенной линзе вполне может резать полиэтиленовые пакеты, выжигать на дереве, лопать воздушные шарики и даже обжечь - своего рода боевой лазер. Невероятно, что можно сделать из двд привода. Поэтому тестируя изготовленный прибор, всегда стоит помнить о технике безопасности.

Превратите лазерную указку MiniMag в режущий лазер с излучателем от пишущего DVD! Этот 245 мВт лазер очень мощный и идеально подходит по размеру к указке MiniMag! Посмотрите прилагаемое видео. ОБРАТИТЕ ВНИМАНИЕ: сделать подобное своими руками можно НЕ СО ВСЕМИ диодами CDRW-DVD резаков!

Предупреждение: ОСТОРОЖНО! Как вы знаете, лазеры могут быть опасны. Никогда не наводите указатель на живое существо! Это не игрушка и обращаться с ним как с обычной лазерной указкой нельзя. Другими словами, не используйте его на презентациях или в игре с животными, не разрешайте детям играть с ним. Это устройство должно находиться в руках здравомыслящего человека, который осознает и отвечает за потенциальную опасность, которую представляет собой указатель.

шаг 1 - Что вам потребуется…

Вам понадобятся следующее:

1. 16X DVD-резак. Я использовал привод LG.

шаг 2 - И…

2. лазерную указку MiniMag можно приобрести в любом магазине, торгующим железом, спортивными или бытовыми товарами.

3. Корпус AixiZ с AixiZ за 4,5 доллара

4. Маленькие отвертки (часовые), канцелярский нож, ножницы по металлу, дрель, круглый напильник и другие мелкие инструменты.


шаг 3 - Выньте лазерный диод из DVD-привода

Выкрутите шурупы из DVD-привода, снимите крышку. Под ней вы обнаружите узел привода каретки лазера.


шаг 4 - Выньте лазерный диод…

хотя DVD-приводы отличаются, в любом есть две направляющие, по которым движется каретка лазера. Снимите шурупы, освободите направляющие и выньте каретку. Отсоедините разъемы и плоские шлейфы-кабели.


шаг 5 - Продолжаем разбирать…

Вынув каретку из привода, начните разбирать устройство с раскручивания шурупов. Мелких шурупов будет много, поэтому запаситесь терпением. Отсоедините кабели от каретки. Там может быть два диода, один для чтения диска (инфракрасный диод) и собственно красный диод, с помощью которого осуществляется прожиг. Вам нужен второй. К красному диоду с помощью трех шурупчиков прикреплена печатная плата. Используйте паяльник для АККУРАТНОГО снятия 3 шурупов. Вы сможете проверить диод с помощью двух пальчиковых батареек с учетом полярности. Вам придется вытащить диод из корпуса, который будет отличаться в зависимости от привода. Лазерный диод - очень хрупкая деталь, поэтому будьте предельно аккуратны.


щаг 6 - Лазерный диод в новом обличье!

Так должен выглядеть ваш диод после «освобождения».


шаг 7 - Готовим корпус AixiZ…

Снимите наклейку с корпуса AixiZ и раскрутите корпус на верхнюю и нижнюю части. Внутри верхней располагается лазерный диод (5 мВт), который мы заменим. Я использовал нож X-Acto и после двух легких ударов, родной диод вышел. Вообще-то при подобных действиях диод может повредиться, но я и ранее умудрялся этого избежать. Используя очень маленькую отвертку, выбил излучатель.


шаг 8 - Собираем корпус…

я использовал немного термоклея и аккуратно установил новый DVD диод в корпусе AixiZ. Плоскогубцами я МЕДЛЕННО давил на края диода по направлению к корпусу до тех пор, пока он не встал заподлицо.


шаг 9 - Устанавливаем его в MiniMag

После того как два проводника будут припаяны к положительному и отрицательному выводам диода, можно будет устанавливать устройство в MiniMag. После разбора MiniMag (снимите крышку, отражатель, линзу и излучатель) вам нужно будет увеличить рефлектор MiniMag, используя круглый напильник или дрель или оба инструмента.


шаг 10 - Последний шаг

Выньте батарейки из MiniMag и после проверки полярности, аккуратно поместите корпус DVD лазера в верхнюю часть MiniMag, где ранее находился излучатель. Соберите верхнюю часть корпуса MiniMag, закрепите отражатель. Пластмассовая линза MiniMag вам не пригодится.


Убедитесь в том, что полярность диода определена правильно до того, как вы его установите и подключите питание! Возможно, вам придется укоротить проводки и настроить фокусировку луча.

шаг 11 - Семь раз отмерь

Верните батарейки (AA) на место, закрутите верхнюю часть MiniMag, включая вашу новую лазерную указку! Внимание!! Лазерные диоды представляют опасность, поэтому не наводите луч на людей и животных.


]Книга

Название
Автор : коллектив
Формат : Смешанный
Размер : 10.31 Мб
Качество : Отличное
Язык : Русский
Год издания : 2008

Как в фантастическом фильме - нажимаешь на курок и взрывается шар! Научись делать такой лазер!
Сделать такой лазер можно самому, в домашних условиях из DVD привода - не обязательно рабочего. Ничего сложного нет!
Поджигает спички, лопает воздушные шарики, режет пакеты и изоленту и многое другое
Ещё им можно лопнуть шарик или лампочку в доме напротив
В архиве - видео с лазером в действии и подробная русская инструкция с картинками по его изготовлению!

Каждый из нас держал в руках лазерную указку. Несмотря на декоративность применения, в ней находится самый настоящий лазер , собранный на основе полупроводникового диода. Такие же элементы устанавливаются на лазерных уровнях и.

Следующее популярное изделие, собранное на полупроводнике – записывающий DVD привод вашего компьютера. В нем установлен более мощный лазерный диод, обладающей термической разрушительной силой.

Это позволяет прожигать слой диска, нанося на него дорожки с цифровой информацией.

Как работает полупроводниковый лазер?

Устройства подобного типа недорогие в производстве, конструкция достаточно массовая. Принцип лазерных (полупроводниковых) диодов основан на использовании классического p-n перехода . Работает такой переход, как и в обычных светодиодах.

Разница в организации излучения: светодиоды излучают «спонтанно», а лазерные диоды «вынужденно».

Общий принцип формирования так называемой «заселенности» квантового излучения выполняется без зеркал. Края кристалла скалываются механическим путем, обеспечивая эффект преломления на торцах, сродни зеркальной поверхности.

Для получения различного типа излучения может использоваться «гомопереход», когда оба полупроводника одинаковые, или «гетеропереход», с разными материалами перехода.



Собственно лазерный диод является доступной радиодеталью. Его можно купить в магазинах, торгующих радиодеталями, а можно извлечь из старого привода DVD-R (DVD-RW).

Важно! Даже простой лазер, используемый в световых указках, может серьезно повредить сетчатку глаза.

Более мощные установки, с прожигающим лучом, могут лишить зрения или нанести ожоги кожного покрова. Поэтому при работе с подобными устройствами, соблюдайте предельную осторожность.

Имея в распоряжении такой диод, вы сможете легко изготовить мощный лазер своими руками. Фактически, изделие может быть вовсе бесплатным, или обойдется вам за смешные деньги.

Лазер своими руками из ДВД привода

Для начала, необходимо раздобыть сам привод. Его можно снять со старого компьютера или приобрести на барахолке за символическую стоимость.

Информация: Чем выше заявленная скорость записи, тем более мощный прожигающий лазер применяется в приводе.

Сняв корпус, и отсоединив управляющие шлейфы, демонтируем пишущую головку вместе с кареткой.



Порядок извлечения лазерного диода:

  1. Соединяем ножки диода между собой с помощью проволоки (шунтируем). При демонтаже может накопиться статическое электричество, и диод может выйти из строя
  2. Удаляем алюминиевый радиатор. Он достаточно хрупкий, имеет крепление, конструктивно «заточенное» под конкретный ДВД привод, и при дальнейшей эксплуатации не нужен. Просто перекусываем радиатор кусачками (не повреждая диод)
  3. Выпаиваем диод, освобождаем ножки от шунта.

Элемент выглядит так:



Следующий важный элемент – схема питания лазера. Использовать блок питания из DVD привода не получится. Он интегрирован в общую схему управления, извлечь его оттуда технически невозможно. Поэтому изготавливаем питающую схему самостоятельно.

Есть соблазн просто подключить 5 вольт с ограничительным резистором, и не мучиться со схемой. Это неверный подход, поскольку любые светодиоды (в том числе и лазерные) питаются не напряжением, а током. Соответственно нужен токовый стабилизатор. Самый доступный вариант – использование микросхемы LM317.



Выходной резистор R1 подбирается в соответствии с током питания лазерного диода. В данной схеме ток должен соответствовать 200 мА.

Собрать лазер своими руками можно в корпусе от световой указки, либо приобрести готовый модуль для лазера в магазинах электроники или на китайских сайтах (например, Али Экспресс).

Преимущество такого решения – вы получаете готовую регулируемую линзу в комплекте. Схема блока питания (драйвер) легко умещается в корпусе модуля.



Если вы решили изготовить корпус самостоятельно, из какой-нибудь металлической трубки – можно использовать штатную линзу от того же привода DVD. Только надо будет придумать способ крепления, и возможность юстировки фокуса.



Важно! Фокусировать луч необходимо при любой конструкции. Он может быть параллельным (если нужна дальность) или конусообразным (при необходимости получить концентрированное термическое пятно).

Линза в комплекте с регулирующим устройством именуется коллиматором.

Чтобы правильно подключить лазер из двд привода, нужна схема контактов. Вы можете отследить минусовой и плюсовой провод по маркировке, на монтажной плате. Сделать это нужно перед демонтажем диода. Если такой возможности нет – воспользуйтесь типовой подсказкой:

Минусовой контакт имеет электрическую связь с корпусом диода. Найти его не составит труда. Относительно минуса, расположенного внизу, плюсовой контакт будет справа.

Если у вас трехножечный лазерный диод (а таких большинство), слева будет или неиспользуемый контакт, или подключение фотодиода. Так бывает, если в одном корпусе расположен и прожигающий и считывающий элемент.

Основной корпус подбирается исходя из размера батареек или аккумуляторов, которые вы планируете использовать. В него аккуратно закрепите свой самодельный лазерный модуль, и прибор готов к применению.



С помощью такого инструмента можно заниматься гравировкой, выжиганием по дереву, раскроем легкоплавких материалов (ткань, картон, фетр, пенопласт и пр.).

Как сделать еще более мощный лазер?

Если вам необходим резак по дереву или пластику, мощности стандартного диода из ДВД привода недостаточно. Понадобиться либо готовый диод мощностью 500-800 мВт, либо придется потратить много времени на поиски подходящих DVD приводов. В некоторых моделях LG и SONY устанавливаются лазерные диоды мощностью 250-300 мВт.

Главное – что подобные технологии доступны для самостоятельного изготовления.

Пошаговая видео инструкция рассказывающая как сделать своими руками лазер из ДВД привода

Многие из вас наверняка слышали, что изготовить лазерную указку или даже режущий луч вполне можно дома, используя простые подручные средства, но как сделать лазер самостоятельно, известно мало кому. Прежде чем приступать к работе над ним, обязательно ознакомьтесь с техникой безопасности.

Правила безопасности при работе с лазером

Неправильное использование луча, особенно высокой мощности, может привести к порче имущества, а также сильно навредить вашему здоровью или здоровью сторонних наблюдателей. Поэтому, прежде чем испытывать собственноручно сделанный экземпляр, запомните следующие правила:

  1. Проследите, чтобы в комнате, где проводятся испытания, не было животных или детей.
  2. Никогда не направляйте луч на животных или людей.
  3. Используйте защитные очки, например, очки, применяемые при проведении сварочных работ.
  4. Помните, что даже отраженный луч может навредить зрению. Никогда не светите лазером в глаза.
  5. Не используйте лазер для воспламенения предметов, находясь в закрытом помещении.

Простейший лазер из компьютерной мыши

Если лазер необходим вам только ради развлечения, достаточно знать, как сделать лазер в домашних условиях из мышки. Его мощность будет совсем незначительной, зато и изготовить его труда не составит. Понадобится лишь компьютерная мышка, небольшой паяльник, батарейки, провода и тумблер отключения.


Сначала мышь необходимо разобрать. Важно не выламывать делали, а аккуратно раскручивать и снимать их по порядку. Сначала верхний кожух, за ним нижний. Далее, используя паяльник, нужно убрать лазер мышки с платы и припаять к нему новые провода. Теперь остается присоединить их к тумблеру отключения и подвести проводки к контактам батареек. Батарейки можно использовать любого типа: и пальчиковые, и так называемые блинчики.

Таким образом, простейший лазер готов.

Если слабенького луча вам мало, и вам интересно как сделать лазер в домашних условиях из подручных средств с достаточно большой мощностью, то стоит попробовать более сложный способ его изготовления, используя при этом DVD-RW привод.


Для работы вам понадобятся:

  • DVD-RW привод (скорость записи должна составлять не менее 16х);
  • аккумулятор ААА, 3 шт.;
  • резистор (от двух до пяти Ом);
  • коллиматор (заменить можно деталью от дешевой китайской лазерной указки);
  • конденсаторы 100 пФ и 100 мФ;
  • фонарь светодиодный из стали;
  • провода и паяльник.

Ход выполнения работ:

Первое, что нам необходимо, – это лазерный диод. Расположен он в каретке DVD-RW привода. Он имеет больший радиатор, чем обычный инфракрасный диод. Но будьте осторожны, эта деталь является весьма хрупкой. Пока диод не установлен, лучше всего произвести обмотку его вывода проволокой, поскольку он слишком чувствителен к статическому напряжению. Обратите особое внимание на полярность. Если питание подвести неверно – диод тут же выйдет из строя.


Соедините детали по следующей схеме: аккумулятор, кнопка включения/выключения, резистор, конденсаторы, лазерный диод. Когда работоспособность конструкции проверена, остается лишь придумать для лазера удобный корпус. Для этих целей вполне подойдет стальной корпус от обычного фонаря. Не забудьте также про коллиматор, ведь именно он превращает излучение в тоненький луч.

Теперь, когда вы знаете, как сделать лазер в домашних условиях, не забывайте о соблюдении техники безопасности, храните его в специальном чехле и не носите с собой, так как правоохранительные органы могут выдвинуть вам претензии по этому поводу.

Смотрите видео: Лазер из DVD привода в домашних условиях и своими руками

Сегодня мы поговорим о том, как сделать самостоятельно мощный зеленый или синий лазер в домашних условиях из подручных материалов своими руками. Также рассмотрим чертежи, схемы и устройство самодельных лазерных указок с поджигающим лучом и дальностью до 20 км

Основой устройства лазера служит оптический квантовый генератор, который, используя электрическую, тепловую, химическую или другую энергию, производит лазерный луч.

В основе работы лазера служит явление вынужденного (индуцированного) излучения. Излучение лазера может быть непрерывным, с постоянной мощностью, или импульсным, достигающим предельно больших пиковых мощностей. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение, то есть является его точной копией. Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу
Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённом состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых. В состоянии равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.). В некоторых схемах рабочий элемент лазера используется в качестве оптического усилителя для излучения от другого источника.

В квантовом генераторе нет внешнего потока фотонов, инверсная заселенность создается внутри него с помощью различных источников накачки. В зависимости от источников существуют различные способы накачки:
оптический - мощная лампа-вспышка;
газовый разряд в рабочем веществе (активной среде);
инжекция (перенос) носителей тока в полупроводнике в зоне
р-п переходах;
электронное возбуждение (облучение в вакууме чистого полупроводника потоком электронов);
тепловой (нагревание газа с последующим его резким охлаждением;
химический (использование энергии химических реакций) и некоторые другие.


Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное - через него луч лазера частично выходит из резонатора.

Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности - это так называемые гигантские импульсы. Этот режим работы лазера называют режимом модулированной добротности.
Лазерный луч представляет собой когерентный, монохромный, поляризованный узконаправленный световой поток. Одним словом, это луч света, испускаемый мало того, что синхронными источниками, так еще и в очень узком диапазоне, причем направленно. Этакий чрезвычайно сконцентрированный световой поток.

Генерируемое лазером излучение является монохроматическим, вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляризаторы, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.

От того, какое рабочее тело использовано в лазере, зависит рабочая длина его волны, а также остальные свойства. Рабочее тело подвергается "накачке" энергией, чтобы получить эффект инверсии электронных населённостей, который вызывает вынужденное излучение фотонов и эффект оптического усиления. Простейшей формой оптического резонатора являются два параллельных зеркала (их также может быть четыре и больше), расположенных вокруг рабочего тела лазера. Вынужденное излучение рабочего тела отражается зеркалами обратно и опять усиливается. До момента выхода наружу волна может отражаться многократно.


Итак, сформулируем кратко условия, необходимые для создания источника когерентного света:

нужно рабочее вещество с инверсной населенностью. Только тогда можно получить усиление света за счет вынужденных переходов;
рабочее вещество следует поместить между зеркалами, которые осуществляют обратную связь;
усиление, даваемое рабочим веществом, а значит, число возбужденных атомов или молекул в рабочем веществе должно быть больше порогового значения, зависящего от коэффициента отражения выходного зеркала.

В конструкции лазеров могут быть использованы следующие типы рабочих тел:

Жидкость. Применяется в качестве рабочего тела, например, в лазерах на красителях. В состав входят органический растворитель (метанол, этанол или этиленгликоль), в котором растворены химические красители (кумарин или родамин). Рабочая длина волны жидкостных лазеров определяется конфигурацией молекул используемого красителя.


Газы. В частности, углекислый газ, аргон, криптон или газовые смеси, как в гелий-неоновых лазерах . "Накачка" энергией этих лазеров чаще всего осуществляется с помощью электрических разрядов.
Твёрдые тела (кристаллы и стёкла). Сплошной материал таких рабочих тел активируется (легируется) посредством добавления небольшого количества ионов хрома, неодима, эрбия или титана. Обычно используются следующие кристаллы: алюмо-иттриевый гранат, литиево-иттриевый фторид, сапфир (оксид алюминия) и силикатное стекло. Твердотельные лазеры обычно "накачиваются" импульсной лампой или другим лазером.

Полупроводники. Материал, в котором переход электронов между энергетическими уровнями может сопровождаться излучением. Полупроводниковые лазеры очень компактны, "накачиваются" электрическим током , что позволяет использовать их в бытовых устройствах, таких как проигрыватели компакт-дисков.


Чтобы превратить усилитель в генератор, необходимо организовать обратную связь. В лазерах она достигается при помещении активного вещества между отражающими поверхностями (зеркалами), образующими так называемый "открытый резонатор" за счет того, что часть излученной активным веществом энергии отражается от зеркал и опять возвращается в активное вещество

В Лазере используются оптические резонаторы различных типов - с плоскими зеркалами, сферическими, комбинациями плоских и сферических и др. В оптических резонаторах, обеспечивающих обратную связь в Лазере, могут возбуждаться только некоторые определённые типы колебаний электромагнитного поля, которые называются собственными колебаниями или модами резонатора.

Моды характеризуются частотой и формой, т. е. пространственным распределением колебаний. В резонаторе с плоскими зеркалами преимущественно возбуждаются типы колебаний, соответствующие плоским волнам, распространяющимся вдоль оси резонатора. Система из двух параллельных зеркал резонирует только на определенных частотах - и выполняет в лазере еще и ту роль, которую в обычных низкочастотных генераторах играет колебательный контур.

Использование именно открытого резонатора (а не закрытого - замкнутой металлической полости - характерного для СВЧ диапазона) принципиально, так как в оптическом диапазоне резонатор с размерами L = ? (L - характерный размер резонатора,? - длина волны) просто не может быть изготовлен, а при L >> ? закрытый резонатор теряет резонансные свойства, поскольку число возможных типов колебаний становится настолько большим, что они перекрываются.

Отсутствие боковых стенок значительно уменьшает число возможных типов колебаний (мод) за счет того, что волны, распространяющиеся под углом к оси резонатора, быстро уходят за его пределы, и позволяет сохранить резонансные свойства резонатора при L >> ?. Однако резонатор в лазере не только обеспечивает обратную связь за счет возврата отраженного от зеркал излучения в активное вещество, но и определяет спектр излучения лазера, его энергетические характеристики, направленность излучения.
В простейшем приближении плоской волны условие резонанса в резонаторе с плоскими зеркалами заключается в том, что на длине резонатора укладывается целое число полуволн: L=q(?/2) (q - целое число), что приводит к выражению для частоты типа колебаний с индексом q: ?q=q(C/2L). В результате спектр излучения Л., как правило, представляет собой набор узких спектральных линий, интервалы между которыми одинаковы и равны c/2L. Число линий (компонент) при заданной длине L зависит от свойств активной среды, т. е. от спектра спонтанного излучения на используемом квантовом переходе и может достигать нескольких десятков и сотен. При определённых условиях оказывается возможным выделить одну спектральную компоненту, т. е. осуществить одномодовый режим генерации. Спектральная ширина каждой из компонент определяется потерями энергии в резонаторе и, в первую очередь, пропусканием и поглощением света зеркалами.

Частотный профиль коэффициента усиления в рабочем веществе (он определяется шириной и формой линии рабочего вещества) и набор собственных частот открытого резонатора. Для используемых в лазерах открытых резонаторов с высокой добротностью полоса пропускания резонатора??p, определяющая ширину резонансных кривых отдельных мод, и даже расстояние между соседними модами??h оказываются меньше, чем ширина линии усиления??h, причем даже в газовых лазерах, где уширение линий наименьшее. Поэтому в контур усиления попадает несколько типов колебаний резонатора.


Таким образом, лазер не обязательно генерирует на одной частоте, чаще наоборот, генерация происходит одновременно на нескольких типах колебаний, для которых усиление? больше потерь в резонаторе. Для того чтобы лазер работал на одной частоте (в одночастотном режиме), необходимо, как правило, принимать специальные меры (например, увеличить потери, как это показано на рисунке 3) или изменить расстояние между зеркалами так, чтобы и в контур усиления попадала только одна мода. Поскольку в оптике, как отмечено выше, ?h > ?p и частота генерации в лазере определяется в основном частотой резонатора, то, чтобы держать стабильной частоту генерации, необходимо стабилизировать резонатор. Итак, если коэффициент усиления в рабочем веществе перекрывает потери в резонаторе для определенных типов колебаний, на них возникает генерация. Затравкой для ее возникновения являются, как и в любом генераторе, шумы, представляющие в лазерах спонтанное излучение.
Для того, чтобы активная среда излучала когерентный монохроматический свет, необходимо ввести обратную связь, т. е. часть излученного этой средой светового потока направить обратно в среду для осуществления вынужденного излучения. Положительная обратная связь осуществляется при помощи оптических резонаторов, которые в элементарном варианте представляют собой два соосно (параллельно и по одной оси) расположенных зеркала, одно из которых полупрозрачное, а другое - «глухое», т. е. полностью отражает световой поток. Рабочее вещество (активная среда), в котором создана инверсная заселенность, располагают между зеркалами. Вынужденное излучение проходит через активную среду, усиливается, отражается от зеркала, вновь проходит через среду и еще более усиливается. Через полупрозрачное зеркало часть излучения испускается во внешнюю среду, а часть отражается обратно в среду и снова усиливается. При определенных условиях поток фотонов внутри рабочего вещества начнет лавинообразно нарастать, начнется генерация монохроматического когерентного света.

Принцип работы оптического резонатора, преобладающее количество частиц рабочего вещества, представленные светлыми кружками, находятся в основном состоянии, т. е. на нижнем энергетическом уровне. Лишь небольшое количество частиц, представленные темными кружками, находятся в электронно-возбужденном состоянии. При воздействии на рабочее вещество источником накачки основное количество частиц переходит в возбужденное состояние (возросло количество темных кружков), создана инверсная заселенность. Далее (рис. 2в) происходит спонтанное излучение некоторых частиц, находящихся в электронно-возбужденном состоянии. Излучение, направленное под углом к оси резонатора, покинет рабочее вещество и резонатор. Излучение, которое направлено вдоль оси резонатора, подойдет к зеркальной поверхности.

У полупрозрачного зеркала часть излучения пройдет сквозь него в окружающую среду, а часть отразится и снова направится в рабочее вещество, вовлекая в процесс вынужденного излучения частицы, находящиеся в возбужденном состоянии.

У «глухого» зеркала весь лучевой поток отразится и вновь пройдет рабочее вещество, индуцируя излучение всех оставшихся возбужденных частиц, где отражена ситуация, когда все возбужденные частицы отдали свою запасенную энергию, а на выходе резонатора, на стороне полупрозрачного зеркала образовался мощный поток индуцированного излучения.

Основные конструктивные элементы лазеров включают в себя рабочее вещество с определенными энергетическими уровнями составляющих их атомов и молекул, источник накачки, создающий инверсную заселенность в рабочем веществе, и оптический резонатор. Существует большое количество различных лазеров, однако все они имеют одну и ту же и притом простую принципиальную схему устройства, которая представлена на рис. 3.

Исключение составляют полупроводниковые лазеры из-за своей специфичности, поскольку у них всё особенное: и физика процессов, и методы накачки, и конструкция. Полупроводники представляют собой кристаллические образования. В отдельном атоме энергия электрона принимает строго определенные дискретные значения, и поэтому энергетические состояния электрона в атоме описываются на языке уровней. В кристалле полупроводника энергетические уровни образуют энергетические зоны. В чистом, не содержащем каких-либо примесей полупроводнике имеются две зоны: так называемая валентная зона и расположенная над ней (по шкале энергий) зона проводимости.


Между ними имеется промежуток запрещенных значений энергии, который называется запрещенной зоной. При температуре полупроводника, равной абсолютному нулю, валентная зона должна быть полностью заполнена электронами, а зона проводимости должна быть пустой. В реальных условиях температура всегда выше абсолютного нуля. Но повышение температуры приводит к тепловому возбуждению электронов, часть из них перескакивает из валентной зоны в зону проводимости.

В результате этого процесса в зоне проводимости появляется некоторое (относительно небольшое) количество электронов, а в валентной зоне до ее полного заполнения будет не хватать соответствующего количества электронов. Электронная вакансия в валентной зоне представляется положительно заряженной частицей, которая именуется дыркой. Квантовый переход электрона через запрещенную зону снизу вверх рассматривается как процесс генерации электронно-дырочной пары, при этом электроны сосредоточены у нижнего края зоны проводимости, а дырки - у верхнего края валентной зоны. Переходы через запрещенную зону возможны не только снизу вверх, но и сверху вниз. Такой процесс называется рекомбинацией электрона и дырки.

При облучении чистого полупроводника светом, энергия фотонов которого несколько превышает ширину запрещенной зоны, в кристалле полупроводника могут совершаться три типа взаимодействия света с.веществом: поглощение, спонтанное испускание и вынужденное испускание света. Первый тип взаимодействия возможен при поглощении фотона электроном, находящимся вблизи верхнего края валентной зоны. При этом энергетическая мощность электрона станет достаточной для преодоления запрещенной зоны, и он совершит квантовый переход в зону проводимости. Спонтанное испускание света возможно при самопроизвольном возвращении электрона из зоны проводимости в валентную зону с испусканием кванта энергии - фотона. Внешнее излучение может инициировать переход в валентную зону электрона, находящегося вблизи нижнего края зоны проводимости. Результатом этого, третьего типа взаимодействия света с веществом полупроводника будет рождение вторичного фотона, идентичного по своим параметрам и направлению движения фотону, инициировавшему переход.


Для генерации лазерного излучения необходимо создать в полупроводнике инверсную заселенность «рабочих уровней» - создать достаточно высокую концентрацию электронов у нижнего края зоны проводимости и соответственно высокую концентрацию дырок у края валентной зоны. Для этих целей в чистых полупроводниковых лазерах обычно применяют накачку потоком электронов.

Зеркалами резонатора являются отполированные грани кристалла полупроводника. Недостатком таких лазеров является то, что многие полупроводниковые материалы генерируют лазерное излучение лишь при очень низких температурах, а бомбардировка кристаллов полупроводников потоком электронов вызывает его сильное нагревание. Это требует наличия дополнительных охладительных устройств, что усложняет конструкцию аппарата и увеличивает его габариты.

Свойства полупроводников с примесями существенно отличаются от свойств беспримесных, чистых полупроводников. Это обусловлено тем, что атомы одних примесей легко отдают в зону проводимости по одному из своих электронов. Эти примеси называются донорными, а полупроводник с такими примесями - п-полупро- водником. Атомы других примесей, напротив, захватывают по одному электрону из валентной зоны, и такие примеси являются акцепторными, а полупроводник с такими примесями - р-полу- проводником. Энергетический уровень примесных атомов располагается внутри запрещенной зоны: у «-полупроводников - недалеко от нижнего края зоны проводимости, у /^-полупроводников - вблизи верхнего края валентной зоны.

Если в этой области создать электрическое напряжение так, чтобы со стороны р-полупроводника был положительный полюс, а со стороны п-полупроводника отрицательный, то под действием электрического поля электроны из п-полупроводника и дырки из /^-полупроводника будут перемещаться (инжектироваться) в область р-п - перехода.

При рекомбинации электронов и дырок будут испускаться фотоны, а при наличии оптического резонатора возможна генерация лазерного излучения.

Зеркалами оптического резонатора являются отполированные грани кристалла полупроводника, ориентированные перпендикулярно плоскости р-п - перехода. Такие лазеры отличаются миниатюрностью, поскольку размеры полупроводникового активного элемента могут составлять около 1 мм.

В зависимости от рассматриваемого признака все лазеры подразделяются следующим образом).

Первый признак. Принято различать лазерные усилители и генераторы. В усилителях на входе подается слабое лазерное излучение, а на выходе оно соответственно усиливается. В генераторах нет внешнего излучения, оно возникает в рабочем веществе за счет его возбуждения с помощью различных источников накачки. Все медицинские лазерные аппараты являются генераторами.

Второй признак - физическое состояние рабочего вещества. В соответствии с этим лазеры подразделяются на твердотельные (рубиновые, сапфировые и др.), газовые (гелий-неоновые, гелий- кадмиевые, аргоновые, углекислотные и др.), жидкосные (жидкий диэлектрик с примесными рабочими атомами редкоземельных металлов) и полупроводниковые (арсенид-галлиевые, арсенид-фосфид- галлиевые, селенид-свинцовые и др.).

Способ возбуждения рабочего вещества является третьим отличительным признаком лазеров. В зависимости от источника возбуждения различают лазеры с оптической накачкой, с накачкой за счет газового разряда, электронного возбуждения, инжекции носителей заряда, с тепловой, химической накачкой и некоторые другие.

Спектр излучения лазера является следующим признаком классификации. Если излучение сосредоточено в узком интервале длин волн, то принято считать лазер монохроматичным и в его технических данных указывается конкретная длина волны; если в широком интервале, то следует считать лазер широкополосным и указывается диапазон длин волн.

По характеру излучаемой энергии различают импульсные лазеры и лазеры с непрерывным излучением. Не следует смешивать понятия импульсный лазер и лазер с частотной модуляцией непрерывного излучения, поскольку во втором случае мы получаем по сути дела прерывистое излучение различной частоты. Импульсные лазеры обладают большой мощностью в одиночном импульсе, достигающие 10 Вт, тогда как их среднеимпульсная мощность, определяемая по соответствующим формулам, сравнительно невелика. У непрерывных лазеров с частотной модуляцией мощность в так называемом импульсе ниже мощности непрерывного излучения.

По средней выходной мощности излучения (следующий признак классификации) лазеры подразделяются на:

· высокоэнергетические (создаваемая плотность потока мощность излучения на поверхности объекта или биообъекта - свыше 10 Вт/см2);

· среднеэнергетические (создаваемая плотность потока мощность излучения - от 0,4 до 10 Вт/см2);

· низкоэнергетические (создаваемая плотность потока мощность излучения - менее 0,4 Вт/см2).

· мягкое (создаваемая энергетическая облученность - Е или плотность потока мощности на облучаемой поверхности - до 4 мВт/см2);

· среднее (Е - от 4 до 30 мВт/см2);

· жесткое (Е - более 30 мВт/см2).

В соответствии с «Санитарными нормами и правилами устройства и эксплуатации лазеров № 5804-91» по степени опасности генерируемого излучения для обслуживающего персонала лазеры подразделяются на четыре класса.

К лазерам первого класса относятся такие технические устройства, выходное коллиминированное (заключенное в ограниченном телесном угле) излучение которых не представляет опасность при облучении глаз и кожи человека.

Лазеры второго класса - это устройства, выходное излучение которых представляет опасность при облучении глаз прямым и зеркально отраженным излучением.

Лазеры третьего класса - это устройства, выходное излучение которых представляет опасность при облучении глаз прямым и зеркально отраженным, а также диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности, и (или) при облучении кожи прямым и зеркально отраженным излучением.

Лазеры четвертого класса - это устройства, выходное излучение которых представляет опасность при облучении кожи диффузно отраженным излучением на расстоянии 10 см от диффузно отражающей поверхности.

Кто в детстве не мечтал о лазере ? Некоторые мужчины мечтают до сих пор. Обычные лазерные указки с маленькой мощностью уже давно не актуальны, так как их мощность оставляет желать лучшего. Остается 2 пути: купить дорогостоящий лазер или сделать его в домашних условиях из подручных средств.

  • Из старого или сломанного DVD привода
  • Из компьютерной мыши и фонарика
  • Из комплекта деталей, купленных в магазине электроники

Как сделать лазер в домашних условиях из старого DVD привода


  1. Найдите нерабочий или ненужный DVD привод, имеющий функцию записи со скоростью записи выше 16x, которые выдают мощность более 160 мВт. Почему нельзя взять пишущий CD, спросите вы. Дело в том, что его диод излучает инфракрасный свет, не видимый человеческим глазом.
  2. Извлеките лазерную головку из привода. Для доступа к “внутренностям” открутите винты, находящиеся на нижней части привода и извлеките лазерную головку, которая также удерживается с помощью винтов. Она может находиться в оболочке или под прозрачным окошком, а может и вовсе снаружи. Самое сложное – извлечь из нее сам диод. Внимание: диод очень чувствителен к статическому электричеству.
  3. Добудьте линзу, без которой использование диода будет невозможно. Можно использовать обычное увеличительное стекло, но тогда каждый раз его придется крутить и настраивать. Или можно приобрести другой диод в комплекте с линзой, а потом заменить его на диод, извлеченный из привода.
  4. Дальше придется купить или собрать схему для питания диода и собрать конструкцию воедино. В диоде DVD привода в качестве отрицательного вывода выступает центральный контакт.
  5. Подключите подходящий источник питания и сфокусируйте линзу. Осталось только найти подходящий контейнер для лазера. Можно для этих целей использовать металлический фонарик, подходящий по размеру.
  6. Рекомендуем посмотреть этот ролик, где все показано очень подробно:

Как сделать лазер из компьютерной мыши

Мощность лазера, сделанного из компьютерной мышки будет намного меньше, чем мощность лазера, изготовленного предыдущим способом. Процедура изготовления не сильно различается.


  1. Первым делом найдите старую или ненужную мышь с видимым лазером любого цвета. Мышки с невидимым свечением не подойдут по понятным причинам.
  2. Далее аккуратно разберите ее. Внутри заметите лазер, который придется отпаивать с помощью паяльника
  3. Теперь повторите пункты 3-5 из вышеописанной инструкции. Различие таких лазеров, повторимся, только в мощности.